scholarly journals Weibull Model Allowing Nearly Instantaneous Failures

2007 ◽  
Vol 2007 ◽  
pp. 1-11 ◽  
Author(s):  
C. D. Lai ◽  
Michael B. C. Khoo ◽  
K. Muralidharan ◽  
M. Xie

A generalized Weibull model that allows instantaneous or early failures is modified so that the model can be expressed as a mixture of the uniform distribution and the Weibull distribution. Properties of the resulting distribution are derived; in particular, the probability density function, survival function, and the hazard rate function are obtained. Some selected plots of these functions are also presented. An R script was written to fit the model parameters. An application of the modified model is illustrated.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qinghu Liao ◽  
Zubair Ahmad ◽  
Eisa Mahmoudi ◽  
G. G. Hamedani

Many studies have suggested the modifications and generalizations of the Weibull distribution to model the nonmonotone hazards. In this paper, we combine the logarithms of two cumulative hazard rate functions and propose a new modified form of the Weibull distribution. The newly proposed distribution may be called a new flexible extended Weibull distribution. Corresponding hazard rate function of the proposed distribution shows flexible (monotone and nonmonotone) shapes. Three different characterizations along with some mathematical properties are provided. We also consider the maximum likelihood estimation procedure to estimate the model parameters. For the illustrative purposes, two real applications from reliability engineering with bathtub-shaped hazard functions are analyzed. The practical applications show that the proposed model provides better fits than the other nonnested models.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1877
Author(s):  
Huihui Li ◽  
Weizhong Tian

In this article, the slashed Lomax distribution is introduced, which is an asymmetric distribution and can be used for fitting thick-tailed datasets. Various properties are explored, such as the density function, hazard rate function, Renyi entropy, r-th moments, and the coefficients of the skewness and kurtosis. Some useful characterizations of this distribution are obtained. Furthermore, we study a slashed Lomax regression model and the expectation conditional maximization (ECM) algorithm to estimate the model parameters. Simulation studies are conducted to evaluate the performances of the proposed method. Finally, two sets of data are applied to verify the importance of the slashed Lomax distribution.


Author(s):  
A. A. Adetunji ◽  
J. A. Ademuyiwa ◽  
O. A. Adejumo

In this paper, a new lifetime distribution called the Inverse Sushila Distribution (ISD) is proposed. Its fundamental properties like the density function, distribution function, hazard rate function, survival function, cumulative hazard rate function, order statistics, moments, moments generating function, maximum likelihood estimation, quantiles function, Rényi entropy and stochastic ordering are obtained. The distribution offers more flexibility in modelling upside-down bathtub lifetime data. The proposed model is applied to a lifetime data and its performance is compared with some other related distributions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Saad J. Almalki ◽  
Tahani A. Abushal ◽  
M. D. Alsulami ◽  
G. A. Abd-Elmougod

Models with the bathtub-shaped hazard rate function are widely used in lifetime analysis and reliability engineering. In this paper, we adopted the reduced new modified Weibull (RNMW) distribution with a bathtub-shaped hazard rate function. Under consideration that the population units are failing with two independent causes of failure and the failure time is distributed with RNMW distribution, we formulate the model which is known as competing risks model. The model parameters under the type-II censoring scheme are estimated with the maximum likelihood method with the corresponding asymptotic confidence intervals. Also, the Bayes point and credible intervals with the help of MCMC methods are constructed. The real and simulated datasets are analyzed for illustrative purposes. Finally, the estimators are compared with the Monte Carlo simulation study.


2019 ◽  
Vol 8 (1) ◽  
pp. 1-5
Author(s):  
M. Kaliraja ◽  
K. Perarasan

In the current manuscript, we have demonstrated the recent generalization of Weibull-G exponential distribution (three-parameter) and it is a very familiar distribution as compared to other distribution.It has been found that Weibull-G exponential distribution (WGED) can be utilized pretty efficiently to evaluate the biological data in the position of gamma and log-normal Weibull distributions. It has two shape parameters and the three scale parameters namely, a, b, λ. Some of its statistical properties are acquired, which includes reserved hazard function, probability-density function, hazard-rate function and survival function. Our aim is to shore-up the results of life-time using three-parameter Weibull generalized exponential distribution. Hence, the corresponding probability functions, hazard-rate function, survival function as well as reserved hazard-rate function has been analyzed in the 3 weeks of high-intensity exercise training in short-term. The outcomes of the present study supporting the results of life-time data that the interim elevated intensity exercise activity attenuated an acute exercise induced growth hormone release.


2020 ◽  
Vol 9 (2) ◽  
pp. 288-310
Author(s):  
Fazlollah Lak ◽  
Morad Alizadeh ◽  
Hamid Karamikabir

In this article, the Topp-Leone odd log-logistic Gumbel (TLOLL-Gumbel) family of distribution have beenstudied. This family, contains the very flexible skewed density function. We study many aspects of the new model like hazard rate function, asymptotics, useful expansions, moments, generating Function, R´enyi entropy and order statistics. We discuss maximum likelihood estimation of the model parameters. Further, we study flexibility of the proposed family are illustrated of two real data sets.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 745
Author(s):  
Mohamed S. Eliwa ◽  
Fahad Sameer Alshammari ◽  
Khadijah M. Abualnaja ◽  
Mahmoud El-Morshedy

The aim of this paper is not only to propose a new extreme distribution, but also to show that the new extreme model can be used as an alternative to well-known distributions in the literature to model various kinds of datasets in different fields. Several of its statistical properties are explored. It is found that the new extreme model can be utilized for modeling both asymmetric and symmetric datasets, which suffer from over- and under-dispersed phenomena. Moreover, the hazard rate function can be constant, increasing, increasing–constant, or unimodal shaped. The maximum likelihood method is used to estimate the model parameters based on complete and censored samples. Finally, a significant amount of simulations was conducted along with real data applications to illustrate the use of the new extreme distribution.


2014 ◽  
Vol 721 ◽  
pp. 43-46
Author(s):  
Pan Hao ◽  
Qing Yu Hao

Behavior-based analysis of the relationship between pedestrian and non-motorized vehicle’s violation was established through empirical study and survival analysis. The nonparametric method which belongs to survival analysis a statistical method combining the result of the event and the time of result complied with the SPSS the data statistical analysis software was used to set up hazard rate function and waiting time survival function and then the regularities of the pedestrians and non-motorized vehicles’ irregularities are obtained. The study is helpful to evaluate the crowd on the influence of the irregularities and provide the basis for urban planning.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1730
Author(s):  
Mohammed M. A. Almazah ◽  
Muqrin A. Almuqrin ◽  
Mohamed. S. Eliwa ◽  
Mahmoud El-Morshedy ◽  
Haitham M. Yousof

In this article, a new flexible probability density function with three parameters is proposed for modeling asymmetric data (positive and negative) with different types of kurtosis (mesokurtic, leptokurtic and platykurtic). Some of its statistical and reliability properties, including hazard rate function, moments, moment generating function, incomplete moments, mean deviations, moment of the residual life, moment of the reversed residual life, and order statistics are derived. Its hazard rate function can be either constant, increasing-constant, decreasing-constant, U shape, upside down shape or upside down-U shape. Seven classical estimation methods are considered to estimate the unknown model parameters. Monte Carlo simulation experiments are performed to compare the performance of the seven different estimation methods. Finally, a distinctive asymmetric real data application is analyzed for illustrating the flexibility of the new model.


Sign in / Sign up

Export Citation Format

Share Document