scholarly journals The Influence of a Mistuned Blade’s Staggle Angle on the Vibration and Stability of a Shaft-Disk-Blade Assembly

2008 ◽  
Vol 15 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Yi-Jui Chiu ◽  
Shyh-Chin Huang

The influence on coupling vibrations and stability among shaft-torsion, disk-transverse and blade-bending of a rotor system with a mistuned blade's staggle angle was investigated analytically. A shaft-disk-blade system has been found existing two types of coupling vibrations, disk-blade (DB), and blade-blade (BB) modes when the shaft was assumed rigid. If the shaft's torsional flexibility was taken into account, an additional type of coupling modes, shaft-disk-blade (SDB), appeared. When an angle-mistuned blade existed, the blades periodicity was destroyed and it was found to change not only the natural frequencies but also the types of modes. Due to blade's mistune, the shaft torsion had to participate to balance such that DB modes vanished and replaced by SDB modes. A mistuned staggle angle was numerically found to alter the natural frequencies in an almost linear trend. At last, the rotational effects were found to merge frequency loci and eventually reached an instability point. Very interestingly, a mistuned blade diminished the possible instability caused by blade-dominating modes, which existed in a perfect and periodic rotor. In words, the rotor might benefit from a mistuned blade from the stability viewpoint. The shaft-dominating mode, yet, was unaffected by the mistune and retained a possible instability.

2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Sangkyu Choi ◽  
Usik Lee

A frequency domain spectral element model is developed for a rotor system that consists of two spinning shafts and an interim disk or blade system. In this study, the shafts are represented by spinning Timoshenko beam models, and the interim disk system is represented by a uniform thick rigid disk with an unbalanced mass. In our derivation of the governing equations of motion of the disk system, the disk is considered to be wobbling about the geometric center of the disk at which the spinning shafts are attached. The high accuracy of the proposed spectral element model is evaluated by comparison with the natural frequencies obtained using the conventional finite element method (FEM). The spectral element model is then used to investigate the effects of the unbalanced mass on the natural frequencies and dynamic responses of an example rotor system.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Yi-Jui Chiu ◽  
Shyh-Chin Huang

The influence on the coupled vibrations among shaft, disk, and blades of a rotor system due to a cracked blade was investigated analytically. On the shaft-disk-blade system, without a cracked blade, there exist three types of coupled modes, shaft disk blade (SDB), disk blade (DB), and blade-blade. A cracked blade was found to change not only the natural frequencies but also the types of coupled modes. First, the DB modes disappeared and were replaced by SDB modes. Second, in some modes the disk experienced mode localization due to the cracked blade. Numerical results showed that natural frequencies varied with the blade’s crack location and depth. At no bending moment places the crack imposed no effect. The crack affected the natural frequency slightly until its depth reached as deep as 70% then the frequency dropped abruptly.


Author(s):  
Fangsheng Wu ◽  
George T. Flowers

Abstract Modern turbomachinery is used to provide power for a wide range of applications, from steam turbines for electrical power plants to the turbopumps used in the Space Shuttle Main Engine. Such devices are subject to a variety of dynamical problems, including vibration, rotordynamical instability, and shaft whirl. In order to properly design and evaluate the performance and stability of turbomachinery, It is important that appropriate analytical tools be available that allow for the study of potentially important dynamical effects. This research effort is concerned with developing a procedure to account for disk flexibility which can readily be used for investigating how such effects might influence the natural frequencies and critical speeds of practical rotor systems. In the present work, a transfer matrix procedure is developed in which the disk flexibility effects are accounted for by means of additional terms included in the transfer matrix formulation. In this development, the shaft is treated as a discrete system while the disk is modelled as a continuous system using the governing partial differential equation. Based on this governing equation, an equivalent inertial moment Mk*, which is the generalized dynamic force coupling between shaft and disk, is then derived. Analysis shows that only the disk modes of one nodal diameter contribute to the inertial moment, Mk*, and thus influence the natural frequencies of the rotor system. To determine the Mk*, the modal expansion method is employed and the governing partial differential equation of the disk is transformed to a set of decoupled forced vibration equations in the generalized coordinates. The Mk* are then calculated in terms of modal shapes, natural frequencies, and material and geometric parameters which can be found in the literature or can be obtained from experiments. Finally the Mk* are incorporated into the point transfer matrix. By so doing, the properties of quick computational speed and ease of use are retained and the complexity of solving partial differential equations is avoided. This allows the present procedure to be easily applied to practical engineering problems. This is especially true for multiple flexible disk rotor systems. As an example, three different cases for a simplified model of the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbo-Pump (HPOTP) rotor have been studied using this procedure. Some of the more interesting results obtained in this example study are enumerated below. 1.) Disk flexibility can introduce additional natural frequency(s) to a rotor system. 2.) Disk flexibility can cause shifting of some of the natural frequencies. 3.) As disk flexibility is increased, lower natural frequencies of the rotor system will be influenced. 4.) At certain rotor speeds, disk flexibility may cause the disappearance of a natural frequency. 5.) The axial position of the disk on the rotor shaft has a significant effect on the degree of this influence.


Author(s):  
Radka JÍROVÁ ◽  
Lubomír PEŠÍK

Vibroisolation systems of base desks for machine and testing facilities usually cannot effect efficient changing of their own frequencies according to operating conditions. Especially in the case of the automotive industry, the possibility of changing natural frequencies is very desirable. During varying operating conditions, the vibroisolation system needs to be regulated easily and quickly regarding the minimisation of dynamical forces transmitted to the ground and to ensure the stability of the testing process. This paper describes one of the options of tuning the base desk at a relatively short time and by sufficient change of own frequencies, which decides the dynamical behaviour of the whole system.


2013 ◽  
Vol 651 ◽  
pp. 710-716 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effects of spindles vibrational behavior on the stability lobes and the Chatter behavior of machine tools have been established. The service life has been observed to reducethe system natural frequencies. An analytical model of a multi-segment spinning spindle, based on the Dynamic Stiffness Matrix (DSM) formulation, exact within the limits of the Euler-Bernoulli beam bending theory, is developed. The system exhibits coupled Bending-Bending (B-B) vibration and its natural frequencies are found to decrease with increasing spinning speed. The bearings were included in the model usingboth rigid, simply supported, frictionless pins and flexible linear spring elements. The linear spring element stiffness is then calibrated so that the fundamental frequency of the system matches the nominal value.


2021 ◽  
Vol 8 (2) ◽  
pp. 302-314
Author(s):  
Brihmat Mostefa ◽  
Refassi Kaddour ◽  
Younes Mimoun ◽  
Douroum Embarek ◽  
Kouadri Amar

Author(s):  
Guangding Wang ◽  
Huiqun Yuan ◽  
Hongyun Sun

In this paper, the stability of a flexible rotor partially filled with liquid is investigated. On the basis of the Navier-Stokes equations for the incompressible flow, a two-dimensional analytical model is developed for fluid motion. Applying the perturbation method, the linearized Navier-Stokes and continuity equations of fluid particles are obtained. Using the boundary conditions of fluid motion, the fluid forces exerted on the rotor are calculated. According to the established fluid-structure coupling model of the rotor system, the whirling frequency equation, which is applied to determine the stability of the system, is derived. The analysis results of the system stability are compared with the theoretical ones reported in the previous study. Good agreement is shown between the results of the present analysis and the literature results. The influences of the main parameters on the dynamic stability of the rotor system are discussed.


2004 ◽  
Vol 126 (3) ◽  
pp. 619-625 ◽  
Author(s):  
Anders Angantyr ◽  
Jan Olov Aidanpa¨a¨

The detailed design of a turbo generator rotor system is highly constrained by feasible regions for the damped natural frequencies of the system. A major problem for the designer is to find a solution that fulfills the design criterion for the damped natural frequencies. The bearings and some geometrical variables of the rotor are used as the primary design variables in order to achieve a feasible design. This paper presents an alternative approach to search for feasible designs. The design problem is formulated as an optimization problem and a genetic algorithm (GA) is used to search for feasible designs. Then, the problem is extended to include another objective (i.e., multiobjective optimization) to show the potential of using the optimization formulation and a Pareto-based GA in this rotordynamic application. The results show that the presented approach is promising as an engineering design tool.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract This paper investigates stable and unstable period-1 motions in a rotor system through the discrete mapping method. The discrete mapping of a nonlinear rotor system is for stable and unstable period-1 motions. The stability and bifurcation of periodic motions are determined. Numerical simulations of periodic motions are completed and phase trajectories, displacement orbits and velocity plane are illustrated. The period-1 motion near the internal resonance is determined with large vibration in the nonlinear rotor system.


Author(s):  
Qing He ◽  
Dongmei Du

The disturbance of electric power system makes large-scale turbine-generator shafts generate torsional vibration. A available method to restrain the torsional vibration of turbine-generator shafts is that all the natural frequencies of torsional vibration of turbine-generator shafts must keep away from the working frequency and its harmonic frequencies as well as all the frequencies that possibly bring on interaction between turbine-generator and electric power system so that the torsional resonation of shafts may not occur. A dynamic design method for natural frequencies of torsional vibration of rotor system based on sensitivity analysis is presented. The sensitivities of natural frequency of torsional vibration to structure parameters of rotor system are obtained by means of the theory of sensitivity. After calculated the torsional vibration dynamic characteristics of original shafts of a torsional vibration stand that simulates the real shafts of 300MW turbine-generator, the dynamic modification for the torsional vibration natural frequency is carried out by the sensitivity analysis method, which makes the first-five natural frequencies of torsional vibration of the stand is very close to the design object. It is proved that the sensitivity analysis method can be used to the dynamic adjustment and optimal design of real shafts of turbine-generator.


Sign in / Sign up

Export Citation Format

Share Document