PNEUMATIC VIBROISOLATION SYSTEM OF THE BASE DESK WITH NATURAL FREQUENCY REGULATION

Author(s):  
Radka JÍROVÁ ◽  
Lubomír PEŠÍK

Vibroisolation systems of base desks for machine and testing facilities usually cannot effect efficient changing of their own frequencies according to operating conditions. Especially in the case of the automotive industry, the possibility of changing natural frequencies is very desirable. During varying operating conditions, the vibroisolation system needs to be regulated easily and quickly regarding the minimisation of dynamical forces transmitted to the ground and to ensure the stability of the testing process. This paper describes one of the options of tuning the base desk at a relatively short time and by sufficient change of own frequencies, which decides the dynamical behaviour of the whole system.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Qihang Li ◽  
Weimin Wang ◽  
Lifang Chen ◽  
Dan Sun

With the increase of the centrifugal compressor capability, such as large scale LNG and CO2reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT) filter was introduced to increase the signal-noise ratio and improve the accuracy of the estimated stability parameters. A finite element model was established to simulate the sine-swept process, and the simulated vibration signals were used to study the filtering effect and demonstrate the feasibility to identify the stability parameters by using Multiple-Input and Multiple-Output system identification method that combines the prediction error method and instrumental variable method. Simulation results show that the identification method with STFT filter improves the estimated accuracy much well and makes the curves of frequency response function clearer. Experiment was carried out on a test rig as well, which indicates the identification method is feasible in stability identification, and the results of experiment indicate that STFT filter works very well.


Author(s):  
Basem Alzahabi

Cylindrical Shells are widely used in many structural designs, such as offshore structures, liquid storage tanks, submarine hulls, and airplane hulls. Most of these structures are required to operate in a dynamic environment. The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Reduction of sound radiation is most efficiently achieved at the design stage, and the acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. Therefore, investigating the dynamic characteristics of cylindrical shells is very critical first step in developing a strategy for modal vibration control for specific operating conditions. Unlike those of beam structure, the lowest natural frequency does not necessarily correspond to the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index in cylindrical shells. Mode shapes associated with each natural frequency are combination of Radial, Longitudinal, and Circumferential modes. In this paper, a scaled model of submarine hull segment under shear diaphragm boundary conditions is analyzed analytically and numerically. Then experimental modal analysis of the scaled model utilizing a fixed response approach was performed to obtain the modal characteristics of the cylindrical shell between 0 and 800 Hz. The cylinder was excited at predetermined points with an impact hammer, while the response was measured using an accelerometer at specified fixed point. Designing a boundary condition that simulate a shear diaphragm is very challenging task by itself. A total of ten natural frequencies were found within that range with their corresponding mode shapes. The experimental data were correlated with those results obtained analytically and numerically using the finite element methods using MSC.NASTRAN software. The results were found to be in excellent agreement.


Author(s):  
Basem Alzahabi ◽  
Henry Kowalski

Cylindrical Shells are widely used in many structural designs, such as offshore structures, liquid storage tanks, submarine hulls, and airplane hulls. Most of these structures are required to operate in a dynamic environment. Therefore, investigating the dynamic characteristics of cylindrical shells is very critical in developing a strategy for modal vibration control for specific operating conditions. Reduction of vibration amplitudes and in sound radiation is most efficiently achieved at the design stage, and the acoustic signatures may be determined by considering operational scenarios, and modal characteristics. In cylindrical shells, mode shapes associated with each natural frequency are combination of Radial, Longitudinal, and Circumferential modes, and unlike those of beam structure, the lowest natural frequency does not necessarily correspond to the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index in cylindrical shells. The ratio of membrane strain energy to total strain energy is high for modes with simple modal patterns and decrease toward zero as the number of nodal (n) lines increase, while the ratio of bending energy to total strain energy is small for simple nodal patterns and increase with increase in complexity of it. Modes associated with membrane deformation require a lot of strain energy while modes associated with bending deformation require less strain energy. The lowest natural frequency occurs where the sum of the two energies are at minimum. Moreover, the natural frequencies that are controlled by membrane strain energy are approximately independent of the shell thickness change. In this paper, a scaled model of submarine hull segment under shear diaphragm boundary conditions is analyzed analytically and numerically. Then the experimental modal analysis of the scaled model utilizing strain gauges was performed to decouple the strain components. Designing a boundary condition that simulate a shear diaphragm is very challenging task by itself. The experimental data were correlated with those results obtained analytically and numerically using the finite element methods using MSC.NASTRAN software. The results were found to be in excellent agreement.


2021 ◽  
Vol 21 (3) ◽  
pp. 106-114
Author(s):  
P.A. Emelyanov ◽  

Today, automobile and tractor trains with trailers are quite popular vehicles used for transporting agricultural goods in the agro-industrial complex of the Russian Federation. Road trains and trac-tors with trailers are characterized by lower performance indicators (maneuverability, stability of movement) than single vehicles. Accordingly, special requirements for safety and trouble-free op-eration are imposed on motor-tractor trains. The author of the article proposes a technical solution that provides longitudinal stability of the movement of multi-link trackless vehicles, and has, in comparison with known analogues, simplicity of design and increased efficiency in the operating conditions of multi-link tractor trains. Analytical studies have been carried out, which made it possible to justify the rational kinematic and geometric parameters of the proposed technical solu-tion. The strength parameters of the damping device installed at the coupling point of tractors and trailers, and ensuring the operational reliability of trailed dump vehicles, are determined. The re-sults of the conducted research are recommended to both domestic and foreign research institutes, design and production structures of the automotive industry for further study and refinement of the proposed device with a view to its possible introduction into practice.


2019 ◽  
Author(s):  
Ji Liu ◽  
Michael Nolan

<div>In the atomic layer deposition (ALD) of Cobalt (Co) and Ruthenium (Ru) metal using nitrogen plasma, the structure and composition of the post N-plasma NHx terminated (x = 1 or 2) metal surfaces are not well known but are important in the subsequent metal containing pulse. In this paper, we use the low-index (001) and (100) surfaces of Co and Ru as models of the metal polycrystalline thin films. The (001) surface with a hexagonal surface structure is the most stable surface and the (100) surface with a zigzag structure is the least stable surface but has high reactivity. We investigate the stability of NH and NH2 terminations on these surfaces to determine the saturation coverage of NHx on Co and Ru. NH is most stable in the hollow hcp site on (001) surface and the bridge site on the (100) surface, while NH2 prefers the bridge site on both (001) and (100) surfaces. The differential energy is calculated to find the saturation coverage of NH and NH2. We also present results on mixed NH/NH2-terminations. The results are analyzed by thermodynamics using Gibbs free energies (ΔG) to reveal temperature effects on the stability of NH and NH2 terminations. Ultra-high vacuum (UHV) and standard ALD</div><div>operating conditions are considered. Under typical ALD operating conditions we find that the most stable NHx terminated metal surfaces are 1 ML NH on Ru (001) surface (350K-550K), 5/9 ML NH on Co (001) surface (400K-650K) and a mixture of NH and NH2 on both Ru (100) and Co (100) surfaces.</div>


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 337
Author(s):  
Sara Mesa Medina ◽  
Ana Rey ◽  
Carlos Durán-Valle ◽  
Ana Bahamonde ◽  
Marisol Faraldos

Two commercial activated carbon were functionalized with nitric acid, sulfuric acid, and ethylenediamine to induce the modification of their surface functional groups and facilitate the stability of corresponding AC-supported iron catalysts (Fe/AC-f). Synthetized Fe/AC-f catalysts were characterized to determine bulk and surface composition (elemental analysis, emission spectroscopy, XPS), textural (N2 isotherms), and structural characteristics (XRD). All the Fe/AC-f catalysts were evaluated in the degradation of phenol in ultrapure water matrix by catalytic wet peroxide oxidation (CWPO). Complete pollutant removal at short reaction times (30–60 min) and high TOC reduction (XTOC = 80 % at ≤ 120 min) were always achieved at the conditions tested (500 mg·L−1 catalyst loading, 100 mg·L−1 phenol concentration, stoichiometric H2O2 dose, pH 3, 50 °C and 200 rpm), improving the results found with bare activated carbon supports. The lability of the interactions of iron with functionalized carbon support jeopardizes the stability of some catalysts. This fact could be associated to modifications of the induced surface chemistry after functionalization as a consequence of the iron immobilization procedure. The reusability was demonstrated by four consecutive CWPO cycles where the activity decreased from 1st to 3rd, to become recovered in the 4th run. Fe/AC-f catalysts were applied to treat two real water matrices: the effluent of a wastewater treatment plant with a membrane biological reactor (WWTP-MBR) and a landfill leachate, opening the opportunity to extend the use of these Fe/AC-f catalysts for complex wastewater matrices remediation. The degradation of phenol spiked WWTP-MBR effluent by CWPO using Fe/AC-f catalysts revealed pH of the reaction medium as a critical parameter to obtain complete elimination of the pollutant, only reached at pH 3. On the contrary, significant TOC removal, naturally found in complex landfill leachate, was obtained at natural pH 9 and half stoichiometric H2O2 dose. This highlights the importance of the water matrix in the optimization of the CWPO operating conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


Sign in / Sign up

Export Citation Format

Share Document