scholarly journals Pulsatile Flow of Two-Fluid Nonlinear Models for Blood Flow through Catheterized Arteries: A Comparative Study

2010 ◽  
Vol 2010 ◽  
pp. 1-21 ◽  
Author(s):  
D. S. Sankar ◽  
Usik Lee

The pulsatile flow of blood through catheterized arteries is analyzed by treating the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is represented by (i) Casson fluid and (ii) Herschel-Bulkley fluid. The expressions for the flow quantities obtained by Sankar (2008) for the two-fluid Casson model and Sankar and Lee (2008) for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is noted that the plug-flow velocity, velocity distribution, and flow rate of the two-fluid H-B model are considerably higher than those of the two-fluid Casson model for a given set of values of the parameters. Further, it is found that the wall shear stress and longitudinal impedance are significantly lower for the two-fluid H-B model than those of the two-fluid Casson model.

2012 ◽  
Vol 2012 ◽  
pp. 1-34 ◽  
Author(s):  
D. S. Sankar ◽  
Yazariah Yatim

Pulsatile flow of blood in narrow tapered arteries with mild overlapping stenosis in the presence of periodic body acceleration is analyzed mathematically, treating it as two-fluid model with the suspension of all the erythrocytes in the core region as non-Newtonian fluid with yield stress and the plasma in the peripheral layer region as Newtonian. The non-Newtonian fluid with yield stress in the core region is assumed as (i) Herschel-Bulkley fluid and (ii) Casson fluid. The expressions for the shear stress, velocity, flow rate, wall shear stress, plug core radius, and longitudinal impedance to flow obtained by Sankar (2010) for two-fluid Herschel-Bulkley model and Sankar and Lee (2011) for two-fluid Casson model are used to compute the data for comparing these fluid models. It is observed that the plug core radius, wall shear stress, and longitudinal impedance to flow are lower for the two-fluid H-B model compared to the corresponding flow quantities of the two-fluid Casson model. It is noted that the plug core radius and longitudinal impedance to flow increases with the increase of the maximum depth of the stenosis. The mean velocity and mean flow rate of two-fluid H-B model are higher than those of the two-fluid Casson model.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 699 ◽  
Author(s):  
Khalil Ur Rehman ◽  
M. Y. Malik ◽  
Waqar A Khan ◽  
Ilyas Khan ◽  
S. O. Alharbi

In this article, the non-Newtonian fluid model named Casson fluid is considered. The semi-infinite domain of disk is fitted out with magnetized Casson liquid. The role of both thermophoresis and Brownian motion is inspected by considering nanosized particles in a Casson liquid spaced above the rotating disk. The magnetized flow field is framed with Navier’s slip assumption. The Von Karman scheme is adopted to transform flow narrating equations in terms of reduced system. For better depiction a self-coded computational algorithm is executed rather than to move-on with build-in array. Numerical observations via magnetic, Lewis numbers, Casson, slip, Brownian motion, and thermophoresis parameters subject to radial, tangential velocities, temperature, and nanoparticles concentration are reported. The validation of numerical method being used is given through comparison with existing work. Comparative values of local Nusselt number and local Sherwood number are provided for involved flow controlling parameters.


2010 ◽  
Vol 2010 ◽  
pp. 1-26 ◽  
Author(s):  
D. S. Sankar

Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the system of nonlinear partial differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The variations of these flow quantities with stenosis size, yield stress, axial distance, pulsatility and amplitude are analyzed. It is found that pressure drop, plug core radius, wall shear stress and resistance to flow increase as the yield stress or stenosis size increases while all other parameters held constant. It is observed that the percentage of increase in the magnitudes of the wall shear stress and resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with that of the single-fluid model of the Herschel-Bulkley fluid. Thus, the presence of the peripheral layer helps in the functioning of the diseased arterial system.


2016 ◽  
Vol 12 (2) ◽  
pp. 5938-5944
Author(s):  
Surendra Kumar

When blood flow through artery, the two-phase nature of blood as a suspension becomes  important as the diameter of the red blood cell (RBC) becomes comparable to the tube diameter. The aim of the present study  is to analyzed the effect of magnetic field on the plug flow region, shear stress in the core and plasma layer in two-fluid flow of blood through stenosed artery. Besides magnetic field, the effect of Womersley parameter, thickness of stenosis and width of plasma layer are also discussed. Generated data are analyzed and discussed through graphs.


2016 ◽  
Vol 793 ◽  
pp. 877-914 ◽  
Author(s):  
Jyotirmoy Rana ◽  
P. V. S. N. Murthy

The analysis of axial dispersion of solute is presented in a pulsatile flow of Casson fluid through a tube in the presence of interfacial mass transport due to irreversible first-order reaction catalysed by the tube wall. The theory of dispersion is studied by employing the generalized dispersion model proposed by Sankarasubramanian & Gill (Proc. R. Soc. Lond. A, vol. 333 (1592), 1973, pp. 115–132). This dispersion model describes the whole dispersion process in terms of three effective transport coefficients, i.e. exchange, convection and dispersion coefficients. In the present study, the effects of yield stress of Casson fluid ${\it\tau}_{y}$, wall absorption parameter ${\it\beta}$, amplitude of fluctuating pressure component $e$ and Womersley frequency parameter ${\it\alpha}$ on the dispersion process are discussed under the influence of pulsatile pressure gradient. In a pulsatile flow, the plug flow radius changes during the period of oscillation and it has an effect on the dispersion process. Even with the Casson fluid model also, in an oscillatory flow, for small values of ${\it\alpha}$, the dispersion coefficient $K_{2}$ is positive, but when the value of ${\it\alpha}$ is as large as 3, $K_{2}$ takes both positive and negative values due to the fluctuations in the velocity profiles. This nature becomes more predominant for ${\it\tau}_{y}$, $e$ and ${\it\beta}$. It is observed that initially, for small time, the amplitude and magnitude of fluctuations of $K_{2}$ becomes more rapid and increases with time but it decreases after certain time and reaches a non-transient state for large time. Like in the case of Newtonian model, double frequency period for $K_{2}$ is observed at small time for large values of ${\it\alpha}$ with the Casson model for blood. It is seen that critical time for which $K_{2}$ reaches a non-transient state is independent of ${\it\tau}_{y}$ and $e$ but is dependent on ${\it\alpha}$. It is also observed that the axial distribution of mean concentration $C_{m}$ of solute depends on ${\it\tau}_{y}$ and ${\it\beta}$. But the effect of $e$ and ${\it\alpha}$ on $C_{m}$ is not very significant. This dispersion model in non-Newtonian pulsatile flow can be applied to study the dispersion process in the cardiovascular system and blood oxygenators.


2019 ◽  
Vol 12 (3) ◽  
pp. 987-1000 ◽  
Author(s):  
S. Debnath ◽  
A. K. Saha ◽  
P. G. Siddheshwar ◽  
A. K. Roy ◽  
◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-27
Author(s):  
D. S. Sankar ◽  
Atulya K. Nagar

Pulsatile flow of blood in constricted narrow arteries under periodic body acceleration is analyzed, modeling blood as non-Newtonian fluid models with yield stress such as (i) Herschel-Bulkley fluid model and (ii) Casson fluid model. The expressions for various flow quantities obtained by Sankar and Ismail (2010) for Herschel-Bulkley fluid model and Nagarani and Sarojamma (2008), in an improved form, for Casson fluid model are used to compute the data for comparing these fluid models. It is found that the plug core radius and wall shear stress are lower for H-B fluid model than those of the Casson fluid model. It is also noted that the plug flow velocity and flow rate are considerably higher for H-B fluid than those of the Casson fluid model. The estimates of the mean velocity and mean flow rate are considerably higher for H-B fluid model than those of the Casson fluid model.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. Sinha ◽  
G. C. Shit ◽  
P. K. Kundu

A theoretical investigation concerning the influence of externally imposed periodic body acceleration on the flow of blood through a time-dependent stenosed arterial segment by taking into account the slip velocity at the wall of the artery has been carried out. A mathematical model is developed by treating blood as a non-Newtonian fluid obeying the Casson fluid model. The pulsatile flow is analyzed by considering a periodic pressure gradient and the inertial effects as negligibly small. A suitable generalized geometry for time-dependent stenosis is taken into account. Perturbation method is used to solve the coupled implicit system of nonlinear differential equations that govern the flow of blood. Analytical expressions for the velocity profile, volumetric flow rate, and wall shear stress are obtained. A thorough quantitative analysis has been made through numerical computations of the variables involved in the analysis that are of special interest in this study. The computational results are presented graphically. The results for different values of the parameters involved in the problem under consideration presented here show that the flow is appreciably influenced by slip velocity in the presence of periodic body acceleration.


Sign in / Sign up

Export Citation Format

Share Document