scholarly journals Kinetics and Thermodynamics Investigations on Corrosion Inhibiting Properties of Coffee Husks Extract on Mild Steel in Acidic Medium

Author(s):  
Nyirimbibi Daniela Kalisa ◽  
Theonestea Muhizi ◽  
Jean Jacques Yvesa Niyotwizera ◽  
Jean Baptistea Barutwanayo ◽  
Jean Boscoa Nkuranga

In this study, the use of green corrosion inhibitors extracted from coffee husks was investigated on mild steel materials in acidic medium. Phenolic compounds from coffee husks were extracted using acetone solvent, characterised and investigated for their corrosion inhibiting properties. The FTIR and 1H-NMR technique were carried out to characterise the present phenolic compounds extracted from purified coffee husks. The corrosion inhibition efficiency of phenolic compounds from coffee husks extract on mild steel in 1.0 M HCl was evaluated by using weight loss method. The obtained results showed that corrosion rates decreased with the increase of inhibitor concentration, temperature and immersion time. The  optimum inhibition efficiency of 86.5% at 25 ºC was obtained with a concentration of 400 mg/L (400 ppm) of coffee husks extract in two hours of experiment. The observed inhibition efficiency was attributed to the physical adsorption mechanism of phenolic compounds on mild steel surface through charged ion formation from protonation of lone pairs of oxygen in phenol or ionic dissociation of carboxylic acid functional group that formed a charged layer over mild steel surface. Furthermore, it was pointed out that the adsorption process obeyed the Langmuir adsorption  isotherm model at all investigated temperatures between 25 and 40 ºC. Keywords: Corrosion inhibitor, phenolic compounds, coffee husks extract, mild steel, adsorption

2016 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Adewale Adewuyi ◽  
Omolade Rahman Bello ◽  
Rotimi A. Oderinde

<p class="PaperAbstract"><span lang="EN-US">Corrosion of metals is a common problem which requires definite attention. In response to this, the oil was extracted from the seed of </span><span lang="EN-US">Terminalia catappa</span><span lang="EN-US"> and used to synthesize sucrose fatty esters via simple reaction mechanism which was considered eco-friendly and sustainable. The corrosion inhibition capacity of sucrose fatty esters for mild steel in 1 M HCl was studied using the weight loss method. It was shown that sucrose fatty ester inhibited corrosion process of mild steel and obeyed Langmuir isotherm. Corrosion rate and inhibition efficiency of sucrose fatty esters were found to reduce with increase of immersion time. The study presented sucrose fatty ester as a promising inhibitor of mild steel corrosion in acidic medium.</span></p>


2009 ◽  
Vol 16 (06) ◽  
pp. 845-853 ◽  
Author(s):  
MUTHU NADAR LAVANYA ◽  
DEVARAYAN KESAVAN ◽  
NAGARAJAN PRABHAVATHI ◽  
NAGARAJAN SULOCHANA

The corrosion inhibition effect of 3-hydroxyflavone was studied on mild steel in 1 M hydrochloric acid ( HCl ). The anticorrosive effect was evaluated by weight loss and electrochemical methods which include Tafel polarization and AC impedance studies at 300 K. In weight loss method, the inhibition efficiency increased with increase in inhibitor concentration, and decreased with increase in temperature and immersion time, and acid concentration. The inhibitor showed maximum efficiency of 91% at 4 × 10-4 M concentration in 1 M hydrochloric acid. The Tafel polarization study showed that the inhibitor behaves likely as cathodic type. The corrosion inhibition effect measured by weight loss method and electrochemical studies was in good agreement with each other. The surface analysis was done by using scanning electron microscope (SEM). Several adsorption isotherms are assessed to study the adsorption behavior of the inhibitor on the mild steel surface. The negative value of ΔG ads indicates the spontaneous adsorption of the inhibitor on mild steel surface.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohamed N. Rahuma ◽  
Mohamed B. EL-Sabbah ◽  
Imperiyka M. Hamad

The pitting corrosion behaviour of mild steel in Na2HPO4 solutions contains chloride ion as an aggressive ion and serine and methionine as inhibitors were investigated using open-circuit potential (OCP), potentiodynamic polarization measurements, and pitting corrosion current measurements; both inhibitors shift the potential in the positive direction. The corrosion rate of the mild steel was measured in the absence and presence of the inhibitors, and the inhibition efficiency of the amino acids at a concentration of 0.02 M was calculated. The pitting corrosion current shows that increasing concentration of the inhibitor causes a decrease in pitting current density, and inhibition efficiency increases with increasing concentration of the inhibitors. The adsorption of these inhibitors on the mild steel surface obeys Langmuir isotherm, and the calculated adsorption free energy (ΔGads0) for the inhibitors on the mild steel in 0.1 M (Na2HPO4 + NaCl) solutions was found to be (−24.61, −29.34) kJ/mol for serine and methionine, respectively, which reveals strong physical adsorption of the amino acids molecules on the mild steel surface.


2016 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Maria Erna ◽  
Emriadi Emriadi ◽  
Admin Alif ◽  
Syukri Arief

The thermodynamic properties and characterizations of corrosion inhibition of chitosan nano-particles on the surface of mild steel in peat water media had been studied using weight loss method at temperatures of 30 - 50 <sup>o</sup>C. Steel surfaces were characterized by FT-IR spectra and SEM-EDS morphology photos. The research found that the value of DG<sup>o </sup>approaching -40 kJmol<sup>-</sup><sup>1</sup>. The negative value of Gibbs free energy shows that the adsorption of inhibitor molecules on the surface of mild steel was achemisorption and it occurred spontaneously. Meanwhile, the values of DH<sup>o </sup>is also negative confirming that the adsoprtion of inhibitor molecules is an exothermic process. The value of DS<sup>o </sup>obtained is positive, it indicates hat the inhibitor molecules were adsorbed spontaneously on the mild steel surface. The analysis on mild steel surfaces hows that the nano-particle chitosan was adsorbed on the steel surface to form the complex compounds.


2015 ◽  
Vol 44 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Y. Sangeetha ◽  
S. Meenakshi ◽  
C. Sairam Sundaram

Purpose – The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Design/methodology/approach – A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy. Findings – The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface. Research limitations/implications – The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency. Practical implications – This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium. Originality/value – Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.


2015 ◽  
Vol 776 ◽  
pp. 193-200 ◽  
Author(s):  
Gunawarman ◽  
Yuli Yetri ◽  
Emriadi ◽  
Novesar Jamarun ◽  
Ken-Cho ◽  
...  

Effect of addition of theobroma cacao peels extract (TCPE), a new proposed green inhibitor, on tensile and hardness properties, and related microstructure of mild steel exposed in solution of 1.5M HCl was investigated in order to know the contribution of this kind of inhibitor in controlling mechanical properties, in addition to reducing corrosion attack. Corrosion behaviors including inhibition mechanism and adsorption process during exposure were then discussed. Corrosion rate and inhibitory efficiency of mild steel samples containing 0.3%C were determined using weight loss method. The samples were exposed in the acid solution with and without addition of 0.5-2.5% the TCPE. Tensile and hardness tests were subsequently performed on the samples to determine the change of mechanical properties of the metal prior and after addition of the extracts. Sample surface morphologies and chemical composition as well were observed by a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDX). The results show that the strength, hardness and elongation of mild steel drop significantly due to heavy damage in the surface after immersion in the HCl solution for 32 days. However, these mechanical properties gradually increase with increasing concentration of the extract following the increase of surface coverage and inhibition efficiency. The increase of the tensile properties and hardness is due mainly to the ability of the inhibitor to cover mild steel surface through formation of metal-organo complexes protection layer in the surface of the mild steel. Although total carbon level in the surface of the mild steel also increases significantly, there is no any proof of carbon difussion into the mild steel. The addition of polar extract of theobroma cacao peels into a solution of 1.5 M HCl is, therefore, not only effective to minimize the degradation on the mild steel surface, but it also diminishes the mechanical properties reduction of the mild steel.


Author(s):  
Akindele Okewale ◽  
Felix Omoruwuo

The influence of neem leaf extract on corrosion inhibition of mild steel in 0.1 M HCl solution was studied using the weight loss method. Neem leaf extract which contains the double bond, carbonyl groups, and aromatic rings functional group as shown by the GCMS, phytochemical test, and FTIR analyses is one of the good natural plant extract that can be used as corrosion inhibitor. The weight loss on surface of mild steel at various inhibitor concentrations was determined. The highest inhibition efficiency of 93.24% was achieved using the neem leaf extract as corrosion inhibitor. Adsorption mechanism was investigated using Langmuir, Temkin, and Freundlich isotherms. Inhibitor adherence on the mild steel surface was spontaneous with the negative Gibb’s free energy value obtained. The mixed type adsorption mechanism (physisorption and chemisorption) is proposed for the inhibitor adsorption on mild steel surface. The inhibitor was adsorbed on the mild steel surface through adsorption of the phytochemical components on the surface of mild steel which protects the metal surface from corroding. The corrosion rate decreases from 0.001 to 0.0002MPY with increase in inhibitor concentrations and exposure time.


Author(s):  
Dr. Abhay Singh

Abstract: DL-methionine has been investigated as inhibitor for the corrosion of mild steel in 1.0M hydrochloric acid solution using weight loss method and Scanning Electron Microscope (SEM) analysis. The investigated results showed that the inhibition efficiency increases with the increase in concentration of the inhibitor and decreases with the increase in temperature. SEM analysis indicated that the metal surface was in a better condition in the presence of inhibitor than the specimen exposed in the absence of the inhibitor. DL-methionine acted as a very good inhibitor and is also environmentally friendly, non -toxic, biodegradable and relatively cheap. Keywords: DL-methionine, mild steel, SEM, Corrosion inhibitor.


2020 ◽  
Vol 305 ◽  
pp. 112844 ◽  
Author(s):  
Motsie E. Mashuga ◽  
Lukman O. Olasunkanmi ◽  
Chandrabhan Verma ◽  
El-Sayed M. Sherif ◽  
Eno E. Ebenso

2019 ◽  
Vol 40 ◽  
pp. 25-29
Author(s):  
Bishal Thapa ◽  
Dipak Kumar Gupta ◽  
Amar Prasad Yadav

The bark extract of Euphorbia royleana as a green corrosion inhibitor was studied in 1M HCl using weight-loss method and potential measurement. The results show that the bark extract of Euphorbia royleana is an effective anti-corrosion inhibitor of mild steel in acidic media. The corrosion rate decreases with the time of immersion. Weight loss experiment shows that the loss in weight decreases with the time of immersion and inhibition efficiency increases with the concentration of extract. It was observed that maximum inhibition efficiency is 99.60% in 100% concentration of extract. Potential measurement study shows that bark extracts act as a mixed type of inhibitor i.e. inhibits both anodically as well as cathodically. 


Sign in / Sign up

Export Citation Format

Share Document