scholarly journals Sulfurous Gases As Biological Messengers and Toxins: Comparative Genetics of Their Metabolism in Model Organisms

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Neal D. Mathew ◽  
David I. Schlipalius ◽  
Paul R. Ebert

Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences fromHomo sapiensto query Genbank for homologous proteins inCaenorhabditis elegans,Drosophila melanogaster, andSaccharomyces cerevisiae. InC. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2and COS. The genes for H2S synthesis have actually increased in number inC. elegans. Interestingly,D. melanogasterand Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions.

2012 ◽  
Vol 6 ◽  
pp. BBI.S9902 ◽  
Author(s):  
Divya P. Syamaladevi ◽  
Margaret S Sunitha ◽  
S. Kalaimathy ◽  
Chandrashekar C. Reddy ◽  
Mohammed Iftekhar ◽  
...  

Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms ( Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome .


2015 ◽  
Vol 1 ◽  
pp. e33 ◽  
Author(s):  
Elisha D. Roberson

CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3′GG motif, which substantially increases the efficiency of editing at all sites tested inC. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a Python command-line tool, ngg2, to identify 3′GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes:Saccharomyces cerevisiae,Caenorhabditis elegans,Drosophila melanogaster,Danio rerio,Mus musculus, andHomo sapiens. I also scanned the genomes of pig (Sus scrofa) and African elephant (Loxodonta africana) to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3′GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3′GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3′GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3′GG editing sites in any species with an available genome sequence.


2015 ◽  
Author(s):  
Elisha D Roberson

CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3’GG motif, which substantially increases the efficiency of editing at all sites tested in C. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a python command-line tool, ngg2, to identify 3’GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes: Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus, and Homo sapiens. I also scanned the genomes of pig (Sus scrofa) and African elephant (Loxodonta africana) to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3’GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3’GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3’GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3'GG editing sites in any species with an available genome sequence.


2015 ◽  
Author(s):  
Elisha D Roberson

CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3’GG motif, which substantially increases the efficiency of editing at all sites tested in C. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a python command-line tool, ngg2, to identify 3’GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes: Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus, and Homo sapiens. I also scanned the genomes of pig (Sus scrofa) and African elephant (Loxodonta africana) to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3’GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3’GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3’GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3'GG editing sites in any species with an available genome sequence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avgi E. Apostolakou ◽  
Xhuliana K. Sula ◽  
Katerina C. Nastou ◽  
Georgia I. Nasi ◽  
Vassiliki A. Iconomidou

AbstractAlzheimer disease (AD) is a neurodegenerative disorder with an –as of yet– unclear etiology and pathogenesis. Research to unveil disease processes underlying AD often relies on the use of neurodegenerative disease model organisms, such as Caenorhabditis elegans. This study sought to identify biological pathways implicated in AD that are conserved in Homo sapiens and C. elegans. Protein–protein interaction networks were assembled for amyloid precursor protein (APP) and Tau in H. sapiens—two proteins whose aggregation is a hallmark in AD—and their orthologs APL-1 and PTL-1 for C. elegans. Global network alignment was used to compare these networks and determine similar, likely conserved, network regions. This comparison revealed that two prominent pathways, the APP-processing and the Tau-phosphorylation pathways, are highly conserved in both organisms. While the majority of interactions between proteins in those pathways are known to be associated with AD in human, they remain unexamined in C. elegans, signifying the need for their further investigation. In this work, we have highlighted conserved interactions related to AD in humans and have identified specific proteins that can act as targets for experimental studies in C. elegans, aiming to uncover the underlying mechanisms of AD.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 240
Author(s):  
Tatyana A. Pounina ◽  
Tatyana A. Gloriozova ◽  
Nick Savidov ◽  
Valery M. Dembitsky

The review focuses on sulfated steroids that have been isolated from seaweeds, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. Sulfur-containing steroids and triterpenoids are sourced from sedentary marine coelenterates, plants, marine sediments, crude oil, and other geological deposits. The review presents the pharmacological profile of sulfated steroids, sulfur-containing steroids, and triterpenoids, which is based on data obtained using the PASS program. In addition, several semi-synthetic and synthetic epithio steroids, which represent a rare group of bioactive lipids that have not yet been found in nature, but possess a high level of antitumor activity, were included in this review for the comparative pharmacological characterization of this class of compounds. About 140 steroids and triterpenoids are presented in this review, which demonstrate a wide range of biological activities. Therefore, out of 71 sulfated steroids, thirteen show strong antitumor activity with a confidence level of more than 90%, out of 50 sulfur-containing steroids, only four show strong antitumor activity with a confidence level of more than 93%, and out of eighteen epithio steroids, thirteen steroids show strong antitumor activity with a confidence level of 91% to 97.4%.


Open Biology ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 160032 ◽  
Author(s):  
Gudrun Bachmann ◽  
Mark W. Richards ◽  
Anja Winter ◽  
Fabienne Beuron ◽  
Edward Morris ◽  
...  

The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase–securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21–24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase–securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change.


2020 ◽  
Author(s):  
Jennifer E. Hewitt ◽  
Ricardo Laranjeiro ◽  
Masoud Norouzi ◽  
Rebecca Ellwood ◽  
Adam Antebi ◽  
...  

ABSTRACTDetermining the physical performance of humans using several measures is essential to evaluating the severity of diseases, understanding the role of environmental factors, and developing therapeutic interventions. Development of analogous measures of physical performance in model organisms can help in identifying conserved signaling pathways and prioritizing drug candidates. In this study, we propose a multi-environment phenotyping (MEP) approach that generates a comprehensive set of measures indicative of physical performance in C. elegans. We challenge C. elegans in different mechanical environments of burrowing, swimming, and crawling, each of which places different physiological demands on the animals to generate locomotory forces. Implementation of the MEP approach is done using three established assays corresponding to each environment–a hydrogel-based burrowing assay, the CeleST swim assay, and the NemaFlex crawling strength assay. Using this approach, we study individuals and show that these three assays report on unique aspects of nematode physiology, as phenotypic measures obtained from different environments do not correlate with one another. Analysis of a subset of genes representative of oxidative stress, glucose metabolism, and fat metabolism show differential expression depending on the animal’s environment, suggesting that each environment evokes a response with distinct genetic requirements. To demonstrate the utility of the MEP platform, we evaluate the response of a muscular dystrophy model of C. elegans dys-1 to drug interventions of prednisone, melatonin and serotonin. We find that prednisone, which is the current treatment standard for human Duchenne muscular dystrophy, confers benefits in all three assays. Furthermore, while the tested compounds improve the physical performance of dys-1, these compounds are not able to fully restore the measures to wild-type levels, suggesting the need for discovery efforts to identify more efficacious compounds that could be aided using the MEP platform. In summary, the MEP platform’s ability to robustly define C. elegans locomotory phenotypes demonstrates the utility of the MEP approach toward identification of candidates for therapeutic intervention, especially in disease models in which the neuromuscular performance is impaired.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Andrea Cuentas-Condori ◽  
Ben Mulcahy ◽  
Siwei He ◽  
Sierra Palumbos ◽  
Mei Zhen ◽  
...  

Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.


Sign in / Sign up

Export Citation Format

Share Document