scholarly journals Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Yao Shu ◽  
Guomin Ou ◽  
Li Wang ◽  
Jingcai Zou ◽  
Quanli Li

Extracellular matrix (ECM), like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi) and heparin (Hep) multilayer was coated on pure titanium using a layer-by-layer (LbL) self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL) on the NaOH-treated titanium substrate (negatively charged surface), followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibilityin vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants.

RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24369-24376 ◽  
Author(s):  
Jiemin Zhao ◽  
Xiaoping Wang ◽  
Yanshen Kuang ◽  
Yufeng Zhang ◽  
Xiaowen Shi ◽  
...  

Alginate (ALG)–lysozyme (LZ) beads were fabricated by a cross-linking process. Negatively charged ALG and positively charged LZ were alternately deposited on the positively charged ALG–LZ beads via a layer-by-layer (LBL) self-assembly technique.


2008 ◽  
Vol 47-50 ◽  
pp. 1411-1414 ◽  
Author(s):  
Jia Long Chen ◽  
Quan Li Li ◽  
Jun Ying Chen ◽  
Nan Huang

This study deals with improving the cytocompatibility of titanium by a coating with heparin(hep), collagen(col) and CD34 antibody. Collagen and heparin molecules were adsorbed onto a titanium surface using a layer-by-layer (LBL) self-assembly technique. The col/hep coating were formed by alternating deposition of negatively charged heparin and positively charged collagen based on electrostatic interactions. Finally the CD34 antibody was absorbed onto the surface of col/hep coating by electrostatic interactions. The chemical composition and surface topography were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The fluorescence microscopy images proved that the CD34 antibody was existed on the surface of the col/hep coating. The SEM results and the MTT test results showed that, compared to the surface of col/hep coating and the surface of titanium, the CD34 surface had better endothelial progenitor cells (EPCs) attachment and proliferation. The EPCs on the CD34 surface displayed the morphology of flat endothelium, and a confluent cell layer after cultured for 2d. This study suggested that this method maybe have good potential for surface modification of cardiovascular devices.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kensuke Kuroda ◽  
Masazumi Okido

Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO3–Ap), a CO3–Ap/CaCO3composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 256 ◽  
Author(s):  
Xingda Wu ◽  
Cuijuan Liu ◽  
Hongpeng Chen ◽  
Yanfang Zhang ◽  
Lin Li ◽  
...  

Surface modification is an effective way to improve the hemocompatibility of biomaterials. Quercetin has significant anticoagulation and antithrombotic effects, and thus it is a promising candidate agent for the surface modification of blood-contacting materials. In this study, quercetin was successfully encapsulated in tripolyphosphate–chitosan nanoparticles (TCs) based on the ionic gelation of chitosan with tripolyphosphate (TPP) anions. Then, hyaluronan acid (HA)/quercetin-loaded TPP–chitosan nanoparticle (QTCs) films, in addition to HA/TCs films, were prepared separately using an electrostatic layer-by-layer self-assembly technique. The encapsulation of quercetin in the chitosan nanoparticles was confirmed by UV spectra. The quercetin-loaded multilayer coatings were also successfully self-assembled, as confirmed by the UV spectra and contact angle measurements. Platelet adhesion experiments were carried out with platelet-enriched plasma so as to evaluate the blood compatibility of the different samples. There were many platelets on the surfaces of the glass and HA/TC-coated titanium, which were partially activated but not aggregated. Meanwhile, many more platelets were observed on the uncoated titanium surfaces, most of which developed pseudopodia. By contrast, the platelet adhesion and activation were reduced remarkably on the surface of the HA/QTC-coated titanium. These results showed that the multilayer coatings containing quercetin could act as potential biomaterials to improve the anticoagulation performance of blood-contacting materials.


2013 ◽  
Vol 10 (84) ◽  
pp. 20130070 ◽  
Author(s):  
Haiyong Ao ◽  
Youtao Xie ◽  
Honglue Tan ◽  
Shengbing Yang ◽  
Kai Li ◽  
...  

Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.


Sign in / Sign up

Export Citation Format

Share Document