scholarly journals Antiosteoporotic Activity ofDioscorea alataL. cv. Phyto through Driving Mesenchymal Stem Cells Differentiation for Bone Formation

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Kang-Yung Peng ◽  
Lin-Yea Horng ◽  
Hui-Ching Sung ◽  
Hui-Chuan Huang ◽  
Rong-Tsun Wu

The aim of this study was to evaluate the effect of an ethanol extract of the rhizomes ofDioscorea alataL. cv. Phyto, Dispo85E, on bone formation and to investigate the mechanisms involved. Our results showed that Dispo85E increased the activity of alkaline phosphatase (ALP) and bone nodule formation in primary bone marrow cultures. In addition, Dispo85E stimulated pluripotent C3H10T1/2 stem cells to differentiate into osteoblasts rather than adipocytes. Ourin vivodata indicated that Dispo85E promotes osteoblastogenesis by increasing ALP activity and bone nodule formation in both intact and ovariectomized (OVX) mice. Microcomputed tomography (μCT) analysis also showed that Dispo85E ameliorates the deterioration of trabecular bone mineral density (tBMD), trabecular bone volume/total volume (BV/TV), and trabecular bone number (Tb.N) in OVX mice. Our results suggested that Dispo85E is a botanical drug with a novel mechanism that drives the lineage-specific differentiation of bone marrow stromal cells and is a candidate drug for osteoporosis therapy.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Angela P. Bastidas-Coral ◽  
Astrid D. Bakker ◽  
Behrouz Zandieh-Doulabi ◽  
Cornelis J. Kleverlaan ◽  
Nathalie Bravenboer ◽  
...  

During the initial stages of bone repair, proinflammatory cytokines are released within the injury site, quickly followed by a shift to anti-inflammatory cytokines. The effect of pro- and anti-inflammatory cytokines on osteogenic differentiation of mesenchymal stem cells is controversial. Here, we investigated the effect of the proinflammatory cytokines TNF-α, IL-6, IL-8, and IL-17F and the anti-inflammatory cytokine IL-4 on proliferation and osteogenic differentiation of human adipose stem cells (hASCs). hASCs were treated with TNF-α, IL-6, IL-8, IL-17F, or IL-4 (10 ng/mL) for 72 h mimicking bone repair. TNF-αreduced collagen type I gene expression but increased hASC proliferation and ALP activity. IL-6 also strongly enhanced ALP activity (18-fold), as well as bone nodule formation by hASCs. IL-8 did not affect proliferation or osteogenic gene expression but reduced bone nodule formation. IL-17F decreased hASC proliferation but enhanced ALP activity. IL-4 enhanced osteocalcin gene expression and ALP activity but reduced RUNX2 gene expression and bone nodule formation. In conclusion, all cytokines studied have both enhancing and reducing effects on osteogenic differentiation of hASCs, even when applied for 72 h only. Some cytokines, specifically IL-6, may be suitable to induce osteogenic differentiation of mesenchymal stem cells as a strategy for enhancing bone repair.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-18
Author(s):  
Yasutaka Hayashi ◽  
Kimihito Cojin Kawabata ◽  
Yosuke Tanaka ◽  
Yasufumi Uehara ◽  
Shigeru Kiryu ◽  
...  

Myelodysplastic syndromes (MDS) is a clonal disorder of hematopoietic stem cells (HSCs) characterized by clonal hematopoietic stem cells (HSCs) with cytopenia, morphological abnormalities, genetic alteration, ineffective normal hematopoiesis, and frequent progression to AML. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually come to dominate the bone marrow space. Despite several studies of mesenchymal stem cells (MSCs), one of the principal components of HSC niche supporting normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. In this study, we examined the mechanism by which less-proliferative MDS cells outcompete normal hematopoiesis through the effects on MSCs using serially transplantable Abcg2-induced MDS/AML model we recently generated. The recipient-derived normal BM cells displayed a considerably lower colony output with markedly decreased numbers of the hematopoietic stem progenitor cells (HSPCs) . However, there were no direct effects on the colony-forming ability of the recipient HSPCs co-cultured with MDS/AML cells, indicating that MDS/AML cells inhibited hematopoiesis through alteration of bone marrow microenvironment, such as MSCs, rather than direct interaction between normal and malignant HSCs. We next analyzed histological features of BM specimens. Interestingly, bone sections from the MDS/AML mice showed a reduced trabecular bone and narrowed growth plates. Moreover, micro computed tomography (micro-CT) analysis of the femora showed a significant reduction of the trabecular bone volume in the recipient mice transplanted with the MDS/AML BM cells. We detected decreased bone formation based on the calcein double labeling, but unchanged numbers of the TRAP-positive mononuclear or multinucleated (osteoclastic) cells in the MDS/AML samples, suggesting that the reduced bone volume was caused by suppressed bone formation. The impaired bone formation was also observed in the human MDS patients in terms of lower bone volume and decreased expression of BGLAP, one of osteogenic markers. In line with the above findings, single cell qRT-PCR analyses of mouse MSCs displayed downregulation of a line of osteolineage markers, indicating that MDS/AML cells suppress bone formation through inhibiting osteolineage differentiation of MSCs. Based on the findings, we next examined if re-induction of osteolineage differentiation of the MDS/AML-derived MSCs could rescue the potential of MSCs to support normal hematopoiesis. Importantly, the number of colony-forming cells (CFCs) was significantly restored by inducing differentiation of MDS/AML-derived MSCs toward osteogenic lineage both in vitro and in vivo. These results indicate that the impairment of osteolineage differentiation is the principal cause for an impaired normal hematopoiesis in MDS/AML, and that restoring the supportive niche will be a potential therapeutic option. Since extracellular vesicles (EVs) derived from MDS/AML cells are critical mediators of intercellular communication, we examined the molecular mechanism underlying the dysfunction of MSCs via EVs. As expected, EVs from MDS/AML cells were incorporated into the normal MSCs where osteolineage marker genes were clearly downregulated, and the number of CFCs significantly decreased in the HSPCs co-cultured with MSCs treated by the MDS/AML-derived EVs. Moreover, by comprehensively analyzing microRNAs (miRNAs) enriched in EVs derived from MDS/AML cells, we identified several miRNAs that impaired the differentiation of normal MSCs. These results suggested that miRNAs in EVs derived from MDS/AML cells disrupted the hematopoietic supporting niche through suppressing an osteolineage differentiation of MSCs. Here we uncover a heretofore unrecognized mechanism of bone marrow failure in MDS via the impairment of osteolineage differentiation in MSCs. EVs from MDS cells will be an attractive therapeutic target to restore the supportive niches, such as MSCs, for the remaining normal HSCs. Figure Disclosures No relevant conflicts of interest to declare.


1991 ◽  
Vol 146 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Bunnai Ogiso ◽  
Francis J. Hughes ◽  
Antony H. Melcher ◽  
Christopher A. G. McCulloch

2017 ◽  
Author(s):  
Taryn Smith ◽  
Laura Tripkovic ◽  
Camilla Damsgaard ◽  
Christian Molgaard ◽  
Aine Hennessy ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hideki Ueyama ◽  
Yoichi Ohta ◽  
Yuuki Imai ◽  
Akinobu Suzuki ◽  
Ryo Sugama ◽  
...  

Abstract Background Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite. Methods β-TCP columns were impregnated with both rh-BMP-2 (30 µg) and ZOL (5 µg), rh-BMP-2 alone, or ZOL alone, and implanted into the left femur canal of New Zealand white rabbits (n = 56). The implanted β-TCP columns were harvested and evaluated at 3 and 6 weeks after implantation. These harvested β-TCP columns were evaluated radiologically using plane radiograph, and histologically using haematoxylin/eosin (H&E) and Masson’s trichrome (MT) staining. In addition, micro-computed tomography (CT) was performed for qualitative analysis of bone formation in each group (n = 7). Results Tissue sections stained with H&E and MT dyes revealed that new bone formation inside the β-TCP composite was significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Micro-CT data also demonstrated that the bone volume and the bone mineral density inside the β-TCP columns were significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Conclusions The topical co-administration of both rh-BMP-2 and ZOL on β-TCP composite promoted and maintained newly formed bone structure in the bone marrow environment.


1987 ◽  
Vol 14 (4) ◽  
pp. 687-690 ◽  
Author(s):  
Shailendra S. Shukla ◽  
Min Y. Leu ◽  
Thomas Tighe ◽  
Bradford Krutoff ◽  
J. Duncan Craven ◽  
...  

2002 ◽  
Vol 17 (12) ◽  
pp. 2183-2195 ◽  
Author(s):  
Marie K. Lindberg ◽  
Sofia Movérare ◽  
Anna-Lena Eriksson ◽  
Stanko Skrtic ◽  
Hui Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document