scholarly journals High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H2–O2–Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Ralf Deiterding

Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniques in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.

2010 ◽  
Vol 6 (S277) ◽  
pp. 263-266
Author(s):  
Bruno Thooris ◽  
Daniel Pomarède

AbstractOur understanding of the structuring of the Universe from large-scale cosmological structures down to the formation of galaxies now largely benefits from numerical simulations. The RAMSES code, relying on the Adaptive Mesh Refinement technique, is used to perform massively parallel simulations at multiple scales. The interactive, immersive, three-dimensional visualization of such complex simulations is a challenge that is addressed using the SDvision software package. Several rendering techniques are available, including ray-casting and isosurface reconstruction, to explore the simulated volumes at various resolution levels and construct temporal sequences. These techniques are illustrated in the context of different classes of simulations. We first report on the visualization of the HORIZON Galaxy Formation Simulation at MareNostrum, a cosmological simulation with detailed physics at work in the galaxy formation process. We then carry on in the context of an intermediate zoom simulation leading to the formation of a Milky-Way like galaxy. Finally, we present a variety of simulations of interacting galaxies, including a case-study of the Antennae Galaxies interaction.


Author(s):  
Giuki Cael ◽  
Hoi Dick Ng ◽  
Kevin R. Bates ◽  
Nikos Nikiforakis ◽  
Mark Short

This paper presents a simplified reactive multi-gas model for the numerical simulation of detonation waves. The mathematical model is formulated based on a thermodynamically consistent and fully conservative formulation, and is extended to model reactive flow by considering the reactant and product gases as two constituents of the system and modelling the conversion between these by a simple one-step reaction mechanism. This simplified model allows simulations using more appropriate chemico-thermodynamic properties of the combustible mixture and yields close Chapman–Jouguet detonation parameters from detailed chemistry. The governing equations are approximated using a high-resolution finite volume centred scheme in an adaptive mesh refinement code, permitting high-resolution simulations to be performed at flow regions of interest. The algorithm is tested and validated by comparing results to predictions of the one-dimensional linear stability analysis of the steady detonation and through the study of the evolution of two-dimensional cellular detonation waves in gaseous hydrogen-based mixtures.


2020 ◽  
Vol 501 (2) ◽  
pp. 1755-1765
Author(s):  
Andrew Pontzen ◽  
Martin P Rey ◽  
Corentin Cadiou ◽  
Oscar Agertz ◽  
Romain Teyssier ◽  
...  

ABSTRACT We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of $21\, \mathrm{km}\, \mathrm{s}^{-1}$ but evolves in a region that is moving at up to $90\, \mathrm{km}\, \mathrm{s}^{-1}$ relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for $320\, \mathrm{Myr}$, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\, \mathrm{M}_{\odot }$ and $4.4\times 10^6\, \mathrm{M}_{\odot }$ for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Luying Zhang ◽  
Francesco Congiu ◽  
Xiaopeng Gan ◽  
David Karunakara

The performance of the radial diffuser of a low pressure (LP) steam turbine is important to the power output of the turbine. A reliable and robust prediction and optimization tool is desirable in industry for preliminary design and performance evaluation. This is particularly critical during the tendering phase of retrofit projects, which typically cover a wide range of original equipment manufacturer and other original equipment manufacturers designs. This work describes a fast and reliable numerical approach for the simulation of flow in the last stage and radial diffuser coupled with the exhaust hood. The numerical solver is based on a streamline curvature throughflow method and a geometry-modification treatment has been developed for off-design conditions, at which large-scale flow separation may occur in the diffuser domain causing convergence difficulty. To take into account the effect of tip leakage jet flow, a boundary layer solver is coupled with the throughflow calculation to predict flow separation on the diffuser lip. The performance of the downstream exhaust hood is modeled by a hood loss model (HLM) that accounts for various loss generations along the flow paths. Furthermore, the solver is implemented in an optimization process. Both the diffuser lip and hub profiles can be quickly optimized, together or separately, to improve the design in the early tender phase. 3D computational fluid dynamics (CFD) simulations are used to validate the solver and the optimization process. The results show that the current method predicts the diffuser/exhaust hood performance within good agreement with the CFD calculation and the optimized diffuser profile improves the diffuser recovery over the datum design. The tool provides General Electric the capability to rapidly optimize and customize retrofit diffusers for each customer considering different constraints.


Author(s):  
Jianhu Nie ◽  
David A. Hopkins ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh

A 2D/3D object-oriented program with h-type adaptive mesh refinement method is developed for finite element analysis of the multi-physics applications including heat transfer. A framework with some basic classes that enable the code to be built accordingly to the type of problem to be solved is proposed. The program consists of different modules and classes, which ease code development for large-scale complex systems, code extension and program maintenance. The developed program can be used as a “test-bed” program for testing new analysis techniques and algorithms with high extensibility and flexibility. The overall mesh refinement causes the CPU time cost to greatly increase as the mesh is refined. However, the CPU time cost does not increase very much with the increase of the level of h-adaptive mesh refinement. The CPU time cost can be saved by up to 90%, especially for the simulated system with a large number of elements and nodes.


2011 ◽  
Vol 18 (3) ◽  
pp. 032902 ◽  
Author(s):  
Frederic Effenberger ◽  
Kay Thust ◽  
Lukas Arnold ◽  
Rainer Grauer ◽  
Jürgen Dreher

2020 ◽  
Author(s):  
Richard Marcer ◽  
Camille Journeau ◽  
Kévin Pons

<p>This work has been performed within the framework of the TANDEM project (Tsunamis in northern AtlaNtic: Definition of Effects by Modelling) which is dedicated to the appraisal of coastal effects due to tsunami waves on the French coastlines. One of the identified objectives of TANDEM consisted in designing, adapting and validating numerical codes for tsunami hazard assessment, addressing the various stages of a tsunami event: generation, propagation, run-up and coastal inundation.</p><p>PRINCIPIA has been working on the development and qualification of two in-house CFD software’s: a 2D Saint-Venant model (often called NLSW for Non-Linear Shallow Water) using an Adaptive Mesh Refinement (AMR) for simulation of large scale tsunami propagation from the source up to coastal scale, and a 3D Navier-Stokes model dedicated to tsunami coastal impact modelling.</p><p>An overview of the results obtained with both codes aiming at being applicable to tsunami modelling, is presented. The validation process has been done on several academic test cases having experimental data for comparisons, as the breaking of a solitary wave on a reef, the generation of a long wave induced by a vertical bloc (massive cliffs, ice bodies) falling down an underlying water volume, the tsunami generation due to a submarine landslide and the tsunami impact on a coastal city.</p><p>A real case simulation is concerned as well, the devastating 2011 Tohoku event which is compared with in-situ data.</p><p>The work was supported by the Tandem project in the frame of French PIA grant ANR-11-RSNR-00023.</p>


Author(s):  
Carlos Pantano-Rubino ◽  
Kostas Karagiozis ◽  
Ramji Kamakoti ◽  
Fehmi Cirak

This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 323
Author(s):  
Caelan Lapointe ◽  
Nicholas T. Wimer ◽  
Sam Simons-Wellin ◽  
Jeffrey F. Glusman ◽  
Gregory B. Rieker ◽  
...  

Fires are complex multi-physics problems that span wide spatial scale ranges. Capturing this complexity in computationally affordable numerical simulations for process studies and “outer-loop” techniques (e.g., optimization and uncertainty quantification) is a fundamental challenge in reacting flow research. Further complications arise for propagating fires where a priori knowledge of the fire spread rate and direction is typically not available. In such cases, static mesh refinement at all possible fire locations is a computationally inefficient approach to bridging the wide range of spatial scales relevant to fire behavior. In the present study, we address this challenge by incorporating adaptive mesh refinement (AMR) in fireFoam, an OpenFOAM solver for simulations of complex fire phenomena involving pyrolyzing solid surfaces. The AMR functionality in the extended solver, called fireDyMFoam, is load balanced, models gas, solid, and liquid phases, and allows us to dynamically track regions of interest, thus avoiding inefficient over-resolution of areas far from a propagating flame. We demonstrate the AMR capability and computational efficiency for fire spread on vertical panels, showing that the AMR solver reproduces results obtained using much larger statically refined meshes, but at a substantially reduced computational cost. We then leverage AMR in an optimization framework for fire suppression based on the open-source Dakota toolkit, which is made more computationally tractable through the use of fireDyMFoam, minimizing a cost function that balances water use and solid-phase mass loss. The extension of fireFoam developed here thus enables the use of higher fidelity simulations in optimization problems for the suppression of fire spread in both built and natural environments.


Sign in / Sign up

Export Citation Format

Share Document