scholarly journals Ti/Al Ohmic Contacts to n-Type GaN Nanowires

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Gangfeng Ye ◽  
Kelvin Shi ◽  
Robert Burke ◽  
Joan M. Redwing ◽  
Suzanne E. Mohney

Titanium/aluminum ohmic contacts to tapered n-type GaN nanowires with triangular cross-sections were studied. To extract the specific contact resistance, the commonly used transmission line model was adapted to the particular nanowire geometry. The most Al-rich composition of the contact provided a low specific contact resistance (mid10−8 Ωcm2) upon annealing at 600 °Cfor 15 s, but it exhibited poor thermal stability due to oxidation of excess elemental Al remaining after annealing, as revealed by transmission electron microscopy. On the other hand, less Al-rich contacts required higher annealing temperatures (850 or 900 °C) to reach a minimum specific contact resistance but exhibited better thermal stability. A spread in the specific contact resistance from contact to contact was tentatively attributed to the different facets that were contacted on the GaN nanowires with a triangular cross-section.

1996 ◽  
Vol 427 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
H. Barry Harrison ◽  
Patrick W. Leech

AbstractThe continual trend in decreasing the dimensions of semiconductor devices results in a number of technological problems. One of the more significant of these is the increase in contact resistance, Rc. In order to understand and counteract this increase, Rc needs to be quantitatively modelled as a function of the geometrical and material properties of the contact. However the use of multiple semiconductor layers for ohmic contacts makes the modelling and calculation of Rc a more difficult problem. In this paper, a Tri-Layer Transmission Line Model (TLTLM) is used to analyse a MOSFET ohmic contact and gatedrain region. A quantitative assessment of the influence on Rc of important contact parameters such as the metal-silicide specific contact resistance, the silicide-silicon specific contact resistance and the gate-drain length can thus be made. The paper further describes some of the problems that may be encountered in defining Rc when the dimensions of certain types of contact found in planar devices decrease.


1990 ◽  
Vol 216 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves ◽  
Martyn H. Kibel

ABSTRACTThe electrical characteristics of In, Sn, Au and Pt contacts on n-type Hg0.4Cd0.6Te formed in the presence and absence of prior In2+ implantation have been examined. Measurements of specific contact resistance made using a Transmission Line Model have shown that the unimtlanted In/Hg0.4Cd0.6 and Sn/Hg0.4Cd0.6 junctions gave values of pc = 3.0x10−3 to 4.0x10−3 ohm.cm2. Auger sputter profiles of the asdeposited In/Hg0.4Cd0.6 and Sn/Hg0.4Cd0.6 interfaces have shown a significant in-diffusion of the metal overlayer. The influence of shallow In2+ implantation prior to metallization was an increase in pc which occurred above a dose of 1013 ions/cm2. In contrast, Pt and Au formed Schottky barrier diodes on n-type Hg0.4Cd0.6 with øb=0.69eV for Pt and øb=0.79eV for Au. With prior In2+ implantation, both Pt and Au contacts exhibited an ohmic behaviour with pc= 2x10−1 ohm.cm2. These results have significance in the fabrication of devices for 1.0 -2.5μm optical communications.


1994 ◽  
Vol 337 ◽  
Author(s):  
Edward Y. Chang ◽  
J.S. Chen ◽  
J.W. Wu ◽  
K.C. Lin

ABSTRACTNon-alloyed ohmic contacts using Ti/Pt/Au and Ni/Ge/Au on InGaAs/GaAs layers grown by Molecular Beam Epitaxy (MBE) have been investigated. The n-type InGaAs film has a doping concentration higher than 1X1019 cm-3. Specific contact resistance below 2X10-7 Ωcm2 could be easily achieved with Ti/Pt/Au. Due to the layer intermixing and outdiffusion of In and Ga, the specific contact resistance and sheet resistance increase after thermal treatment. When Ni/Ge/Au is used as the contact metal, the outdiffusion of In and Ga atoms is more severe than that of Ti/Pt/Au. After annealing at 450°C for two minutes, the Au4In formed and the characteristics of the contact became worse. All the phenomena illustrated above have been observed and investigated by Transmission Line Model, X-ray diffraction, Auger Electron Spectroscopy and Secondary Ion Mass Spectrum. As far as the thermal stability is concerned, it is convinced that Ti/Pt/Au is the best one of these two non-alloyed ohmic contact studied.


1994 ◽  
Vol 337 ◽  
Author(s):  
Patrick W Leech ◽  
Geoffrey K. Reeves

ABSTRACTThe electrical properties of Pd/Zn/Pd/Au based ohmic contacts to p-type In0 47Ga0 53As/ InP with an interposed superlattice of 50Å In047Gao 53As/ 50 Å InP have been investigated. In this study, several configurations of the Pd/Zn/Pd/Au metallization were fabricated with varying thicknesses of the Zn and interfacial Pd layers in the range 0 to 400 Å. The lowest values of specific contact resistance, ρc, were 1.2 x 10-5 Ω cm2 as-deposited and 7.5 x 106 Ω cm2 for samples annealed at 500 °C. In the as-deposited structures, ρc was reduced by an increase in thickness of both the Zn and Pd layers to 300 Å. For annealed samples, a critical thickness of the Zn ≥ 50 Å and Pd ≥ 100 Å layers was required in order to significantly reduce the magnitude of ρc. These results are consistent with a model of Pd/Zn contacts based on Zn doping of the interface. Studies of thermal stability of the contacts at 400 °C and 500 °C have shown that the Zn/Pd/Au and Pd/Zn/Pd/Au configurations were significanty lower in ρc at extended ageing times than the Pd/Au contacts.


1993 ◽  
Vol 318 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
Patrick W. Leech ◽  
H. Barry Harrison

ABSTRACTThis paper briefly reviews the standard Transmission Line Model (TLM) commonly used to measure the specific contact resistance of a planar ohmic contact. It is proposed that in the case of a typical Au-Ge-Ni alloyed ohmic contact, a more realistic model would need to take into account the presence of the alloyed layer at the metal-semiconductor interface. An alternative is described which is based on three contact layers and the two interfaces between them, thus forming a Tri-Layer Transmission Line Model (TLTLM). Expressions are given for the contact resistance Rc and the contact end resistance Re of this structure, together with a current division factor, f. Values for the parameters of this model are inferred from experimentally reported values of Rc and Re for two types of contact.


2007 ◽  
Vol 556-557 ◽  
pp. 721-724 ◽  
Author(s):  
Anne Elisabeth Bazin ◽  
Thierry Chassagne ◽  
Jean François Michaud ◽  
André Leycuras ◽  
Marc Portail ◽  
...  

In this work, ohmic contacts, formed by 100nm Ni layer RTA annealed or not, were investigated on 3C-SiC epilayers exhibiting different nitrogen doping levels. The epilayers were grown on (100) silicon. Doping level (N) and eventual dopant contamination (Al) were analyzed by C-V and/or SIMS. The specific contact resistance was determined by using Transmission Line Model (TLM) patterns for each condition (doping and annealing). Our results clearly evidence that very low specific contact resistance (~10-51.cm²) is obtained on highly doped 3C-SiC epilayers, enlightening the interest of both material and Ni contacts for future devices fabrication.


2011 ◽  
Vol 1335 ◽  
Author(s):  
N.F. Mohd Nasir ◽  
A.S. Holland ◽  
G.K. Reeves ◽  
P.W. Leech ◽  
A. Collins ◽  
...  

ABSTRACTMembranes of epitaxial SiC have been used as a means of eliminating the leakage current into the Si substrate during circular transmission line model (CTLM) measurements. In the n+-3C-SiC/Si wafers, the Si substrate was etched in a patterned window with dimensions up to 10 mm × 15 mm2. An array of CTLM metal contacts was then deposited onto the upper surface of the n+-SiC membrane. The CTLM contacts on the membrane have shown an ohmic current/voltage response while electrodes located on the adjacent substrate were non-ohmic. Values of ρc were measured directly on the membranes. These results have shown a significant increase in the current flow below the metal contacts due to the presence of the Si substrate.


2008 ◽  
Vol 1108 ◽  
Author(s):  
S.J. Pearton ◽  
L.F. Voss ◽  
R. Khanna ◽  
Wantae Lim ◽  
L. Stafford ◽  
...  

AbstractThere is continued interest in developing more stable contacts to a variety of GaN-based devices. In this paper we give two examples of devices that show improved thermal stability when boride, nitride or Ir diffusion barriers are employed in Ohmic contact stacks. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/X /Ti/Au source/ drain Ohmic (where X is TiB2, ZrN, TiN, TaN or Ir) contacts and subjected to long-term annealing at 350°C. For GaN layers with an electron concentration of ∼3×1017 cm-3, the minimum specific contact resistance achieved is 6×10-5 Ω cm2 for Ti/Al/TiN/Ti/Au after annealing at 800°C. The specific contact resistance was found to strongly depend on the doping level, suggesting that tunneling is the dominant mechanism of current flow. By comparison with companion devices with conventional Ti/Al/Ni/Au Ohmic contacts, the HEMTs with boride-based Ohmic metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The gate current for standard HEMTs increases during aging and the standard Ohmic contacts eventually fail by shorting to the gate contact. Similarly, InGaN/GaN multiple quantum well light-emitting diodes (MQW-LEDs) were fabricated with either Ni/Au/TiB2/Ti/Au or Ni/Au/Ir/Au p-Ohmic contacts. Both of these contacts showed superior long-term thermal stability compared to LEDs with conventional Ni/Au contacts.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


Sign in / Sign up

Export Citation Format

Share Document