scholarly journals Response of Paroxysmal Nocturnal Hemoglobinuria Clone with Aplastic Anemia to Rituximab

2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Radha Raghupathy ◽  
Olga Derman

Paroxysmal nocturnal hemoglobinuria is caused by expansion of a hematopoietic stem cell clone with an acquired somatic mutation in the PIG-A gene. This mutation aborts the synthesis and expression of the glycosylphosphatidylinositol anchor proteins CD55 and CD59 on the surface of blood cells, thereby making them more susceptible to complement-mediated damage. A spectrum of disorders occurs in PNH ranging from hemolytic anemia and thrombosis to myelodysplasia, aplastic anemia and, myeloid leukemias. Aplastic anemia is one of the most serious and life-threatening complications of PNH, and a PNH clone is found in almost a third of the cases of aplastic anemia. While allogeneic bone marrow transplantation and T cell immune suppression are effective treatments for aplastic anemia in PNH, these therapies have significant limitations. We report here the first case, to our knowledge, of PNH associated with aplastic anemia treated with the anti-CD20 monoclonal antibody rituximab, which was associated with a significant reduction in the size of the PNH clone and recovery of hematopoiesis. We suggest that this less toxic therapy may have a significant role to play in treatment of PNH associated with aplastic anemia.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5016-5016
Author(s):  
Wenrui Yang ◽  
Xin Zhao ◽  
Guangxin Peng ◽  
Li Zhang ◽  
Liping Jing ◽  
...  

Aplastic anemia (AA) is an immune-mediated bone marrow failure, resulting in reduced number of hematopoietic stem and progenitor cells and pancytopenia. The presence of paroxysmal nocturnal hemoglobinuria (PNH) clone in AA usually suggests an immunopathogenesis in patients. However, when and how PNH clone emerge in AA is still unclear. Hepatitis associated aplastic anemia (HAAA) is a special variant of AA with a clear disease course and relatively explicit immune pathogenesis, thus serves as a good model to explore the emergence and expansion of PNH clone. To evaluate the frequency and clonal evolution of PNH clones in AA, we retrospectively analyzed the clinical data of 90 HAAA patients that were consecutively diagnosed between August 2006 and March 2018 in Blood Diseases Hospital, and we included 403 idiopathic AA (IAA) patients as control. PNH clones were detected in 8 HAAA patients (8.9%,8/90) at the time of diagnosis, compared to 18.1% (73/403) in IAA. Eight HAAA patients had PNH clone in granulocytes with a median clone size of 3.90% (1.09-12.33%), and 3 patients had PNH clone in erythrocytes (median 4.29%, range 2.99-10.8%). Only one HAAA patients (1/8, 12.5%) had a PNH clone larger than 10%, while 24 out of 73 IAA patients (32.9%) had larger PNH clones. Taken together, we observed a less frequent PNH clone with smaller clone size in HAAA patients, compared to that in IAAs. We next attempted to find out factors that associated with PNH clones. We first split patients with HAAA into two groups based on the length of disease history (≥3 mo and < 3mo). There were more patients carried PNH clone in HAAA with longer history (21.4%, 3/14) than patients with shorter history (6.6%, 5/76), in line with higher incidence of PNH clone in IAA patients who had longer disease history. Then we compared the PNH clone incidence between HAAA patients with higher absolute neutrophil counts (ANC, ≥0.2*109/L) and lower ANC (< 0.2*109/L). Interestingly, very few VSAA patients developed PNH clone (5%, 3/60), while 16.7% (5/30) of non-VSAA patients had PNH clone at diagnosis. We monitored the evolution of PNH clones after immunosuppressive therapy, and found increased incidence of PNH clone over time. The overall frequency of PNH clone in HAAA was 20.8% (15/72), which was comparable to that in IAA (27.8%, 112/403). Two thirds of those new PNH clones occurred in non-responders in HAAA. In conclusion, PNH clones are infrequent in HAAA compared to IAA at the time of diagnosis, but the overall frequency over time are comparable between the two groups of patients. In SAA/VSAA patients who are under the activated abnormal immunity, longer clinical course and relatively adequate residual hematopoietic cells serve as two important extrinsic factors for HSCs with PIGA-mutation to escape from immune attack and to expand. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3426-3426 ◽  
Author(s):  
Andrew Shih ◽  
Ian H. Chin-Yee ◽  
Ben Hedley ◽  
Mike Keeney ◽  
Richard A. Wells ◽  
...  

Abstract Abstract 3426 Introduction: Paroxysmal Nocturnal Hemoglobinuria (PNH) is a rare disorder due to a somatic mutation in the hematopoietic stem cell. The introduction of highly sensitive flow cytometric and aerolysin testing have shown the presence of PNH clones in patients with a variety of other hematological disorders such as aplastic anemia (AA) and myelodysplasic syndrome (MDS). It is hypothesized that patients with these disorders and PNH clones may share an immunologic basis for marrow failure with relative protection of the PNH clone, due to their lack of cell surface expression of immune accessory proteins. This is supported by the literature showing responsiveness in AA and MDS to immunosuppressive treatments. Preliminary results from a recent multicenter trial, EXPLORE, notes that PNH clones can be seen in 70% of AA and 55% of MDS patients, and therefore there may be utility in the general screening of all patients with bone marrow failure (BMF) syndromes. Furthermore, it has been suggested that the presence of PNH cells in MDS is a predictive biomarker that is clinically important for response to immunosuppressive therapy. Methods: Our retrospective cohort study in a tertiary care center used a high sensitivity RBC and FLAER assay to detect PNH clones as small as 0.01%. Of all patients screened with this method, those with bone marrow biopsy and aspirate proven MDS, AA, or other BMF syndromes (defined as unexplained cytopenias) were analysed. Results from PNH assays were compared to other clinical and laboratory parameters such as LDH. Results: Overall, 102 patients were initially screened over a 12 month period at our center. 30 patients were excluded as they did not have biopsy or aspirate proven MDS, AA, or other BMF syndromes. Of the remaining 72 patients, four patients were found to have PNH clones, where 2/51 had MDS (both RCMD, IPSS 0) [3.92%] and 2/4 had AA [50%]. The PNH clone sizes of these four patients were 0.01%, 0.01%, 0.02%, and 1.7%. None of the MDS patients with known recurrent karyotypic abnormalities had PNH clones present. Only one of the four patients had a markedly increased serum LDH level. Conclusions: Our retrospective study indicates much lower incidence of PNH clones in MDS patients or any patients with BMF syndromes when compared to the preliminary data from the EXPLORE trial. There is also significant disagreement in other smaller cohorts in regards to the incidence of PNH in AA and MDS. Screening for PNH clones in patients with bone marrow failure needs further study before adoption of widespread use. Disclosures: Keeney: Alexion Pharmaceuticals Canada Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wells:Alexion Pharmaceuticals Canada Inc: Honoraria. Sutherland:Alexion Pharmaceuticals Canada Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2748-2751 ◽  
Author(s):  
Jun-ichi Nishimura ◽  
Toshiyuki Hirota ◽  
Yuzuru Kanakura ◽  
Takashi Machii ◽  
Takashi Kageyama ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell disorder characterized by clonal blood cells that are deficient in glycosylphosphatidylinositol-anchored proteins because of somatic mutations of the PIG-A gene. Many patients with PNH have more than one PNH clone, but it is unclear whether a single PNH clone remains dominant or minor clones eventually become dominant. Furthermore, it is unknown how many hematopoietic stem cells (HSCs) sustain hematopoiesis and how long a single HSC can support hematopoiesis in humans. To understand dynamics of HSCs, we reanalyzed the PIG-A gene mutations in 9 patients 6 to 10 years after the previous analyses. The proportion of affected peripheral blood polymorphonuclear cells (PMNs) in each patient was highly variable; it increased in 2 (from 50% and 65% to 98% and 97%, respectively), was stable in 4 (changed less than 20%), and diminished in 3 (94%, 99%, and 98% to 33%, 57%, and 43%, respectively) patients. The complexity of these results reflects the high variability of the clinical course of PNH. In all patients, the previously predominant clone was still present and dominant. Therefore, one stem cell clone can sustain hematopoiesis for 6 to 10 years in patients with PNH. Two patients whose affected PMNs decreased because of a decline of the predominant PNH clone and who have been followed up for 24 and 31 years now have an aplastic condition, suggesting that aplasia is a terminal feature of PNH.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 209 ◽  
Author(s):  
Lucio Luzzatto

Paroxysmal nocturnal hemoglobinuria (PNH) is a very rare disease that has been investigated for over one century and has revealed unique aspects of the pathogenesis and pathophysiology of a hemolytic anemia. PNH results from expansion of a clone of hematopoietic cells that, as a consequence of an inactivating mutation of the X-linked genePIG-A, are deficient in glycosylphosphatidylinositol (GPI)-linked proteins: since these include the surface membrane complement-regulatory proteins CD55 and CD59, the red cells arising from this clone are exquisitely sensitive to lysis by activated complement. Until a decade ago, the treatment options for PNH were either supportive treatment – often including blood transfusion, anti-thrombosis prophylaxis, and sometimes thrombolytic therapy – or allogeneic bone marrow transplantation. Since 2007, PNH has received renewed and much wider attention because a new form of treatment has become available, namely complement blockade through the anti-C5 monoclonal antibody eculizumab. This brief review focuses on two specific aspects of PNH: (1) response to eculizumab, variability of response, and how this new agent has impacted favorably on the outlook and on the quality of life of patients; and (2) with respect to pathogenesis, new evidence supports the notion that expansion of the PNH clone results from T-cell-mediated auto-immune damage to hematopoietic stem cells, with the GPI molecule as target. Indeed, GPI-specific CD8+ T cells – which have been identified in PNH patients – would spare selectively GPI-negative stem cells, thus enabling them to re-populate the marrow of a patient who would otherwise have aplastic anemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4428-4428
Author(s):  
Jeffrey J Pu ◽  
Galina Mukhina ◽  
Hao Wang ◽  
William Savage ◽  
Robert A Brodsky

Abstract Abstract 4428 Introduction: Acquired aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH) are closely related bone marrow failure disorders. Most AA results from an autoimmune attack directed against hematopoietic stem/progenitor cells. PNH originates from a multipotent hematopoietic stem cell (HSC) that acquires a PIG-A mutation. The PIG-A gene mutation leads to glycosylphosphatidylinositol-anchor protein (GPI-AP) biosynthesis deficiency and subsequent hemolysis secondary to the absence of complement regulatory proteins (CD55 and CD59). Both PNH and AA can be cured by allogeneic bone marrow transplantation (alloBMT), but only a minority of patients is offered this approach due to the potential morbidity and mortality. AA can be treated with immunosuppressive therapy (IST) and PNH can be controlled by eculizumab. It has been estimated that more than 50% of AA patients harbor small, but expandable PNH populations at diagnosis. The natural history of PNH clones in AA patients following non-transplant therapy is not well studied. The purpose of this study is to determine the fate and clinical relevance of these PNH clones in patients with AA who did not receive an alloBMT. Patients and Method: Twenty-seven patients with AA and a detectable PNH clone were monitored for a median of 5.3 years (range,1.5 to 11.5 years). The PNH granulocyte clone sizes were measured using flow cytometry and analyzed via CellQuest software. PE-conjugated anti-CD15 and fluoresceinated aerolysin variant (FLAER) staining were used to define granulocytes and GPI-AP deficient cells respectively. Serum lactate dehydrogenase (LDH) value was used as a surrogate for monitoring hemolysis and 1.5× the upper limit of normal LDH value (330mg/dL) as a cut-off point to define clinically apparent hemolysis. A PNH size change <2.5% was considered as stable. Patients were treated with IST, HiCy, or both. Result: We found a linear relationship between PNH granulocyte clone size and LDH values (Pearson correlation coefficient=0.73; P<0.0001). A PNH clone size above 23% was the threshold to identify hemolysis as measured by LDH (ROC analysis with AUC=0.88). Higher LDH values over the period of follow-up were associated with larger PNH granulocyte clone size at diagnosis (P=0.03). Patients with small (≤15%) initial PNH granulocytes had lower LDH levels at 5 years after diagnosis (mean±SD: 236.9±109.9 vs 423.1±248.8; P=0.02), and were less likely to develop hemolysis (13.3% vs 55.6%, P=0.06) comparing to those with larger (>15%) initial PNH granulocytes. Of 9 patients who initially were treated with traditional IST (ATG, CsA, and prednisone), 7 did not respond to treatment and eventually received high-dose cyclophosphamide (HiCy) salvage therapy, 2 achieved a remission and did not require further treatment though one demonstrated PNH clone size expansion to 50% after 37 months. After HiCy salvage, all 7 patients became transfusion independent and 4 of them had no further PNH clone expansion. PNH clone expansion was observed in 7 of 9 patients at a median time of 3 (range: 2 to 87) months after treatment. Of 15 patients who received HiCy as initial therapy, 14 achieved remissions. Later expansion of PNH size was observed in 7 patients, of which 5 eventually required intermittent blood transfusion but only 1 developed symptomatic hemolysis necessitating eculizumab therapy. The median time to PNH granulocyte clone expansion after HiCy was 52 (range: 18 to 106) months. In 5 patients who received HiCy and then relapsed, their PNH clone size only increased (1±0.7)% in (71±31) months observation during post treatment remission; however, their PNH clone size increase accelerated to (38±14)% in (34±21) months after AA relapse (P=0.04). Two nSAA patients with an initial PNH clone size ≤15% spontaneously recovered hematopoiesis at 84 and 56 months respectively, neither had PNH clone size expansion. In this study, 25.9% patients kept a stable PNH size, 48.1% patients increased the size, and 26% patients decreased the size. The group with small initial PNH clone sizes (≤15%) was the most stable over time. Conclusion: The risk of developing clinically significant PNH over 10 years appears to be low in AA patients with PNH clones, especially for those with small initial PNH granulocyte clones (≤15%) and for those who maintain remission following therapy. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 92 (7) ◽  
pp. 4-9
Author(s):  
E. A. Mikhaylova ◽  
Z. T. Fidarova ◽  
A. V. Abramova ◽  
A. V. Luchkin ◽  
V. V. Troitskaya ◽  
...  

Treatment programs for patients with acquired aplastic anemia include two main therapeutic options: allogeneic bone marrow transplantation and combined immunosuppressive therapy (IST). However, combined IST remains the method of choice for most adult AA patients. This study included 120 AA patients who received IST at the National Research Center for Hematology in 20072016. The analysis was applied to 120 patients. Median age was 25 (1765) years, M/F: 66/54, SAA/NSAA: 66%/34%. Effectiveness of IST was carried out in 120 patients with AA. This group did not include 8 SAA patients who died during the first 3 months from the start of treatment from severe infectious complications (early deaths 6.2%) and 2 AA patients who dropped out of surveillance. The observation time was 55 (6120) months. Paroxysmal nocturnal hemoglobinuria (PNH clone) was detected in 67% of AA patients. The median PNH clone size (granulocytes) was 2.5 (0.0199.5)%. The treatment was according to the classical protocol of combined IST: horse antithymocytic globulin and cyclosporin A. Most of patients (87%) responded to combined immunosuppressive therapy. To achieve a positive response, it was sufficient to conduct one course of ATG to 64% of patients, two courses of ATG 24% of patients and 2% of patients responded only after the third course of ATG. A positive response after the first course was obtained in 64% of patients included in the analysis. Most of the responding patients (93%) achieve a positive response after 36 months from the start of treatment. Therefore, the 3rd6th months after the first course of ATG in the absence of an answer to the first line of therapy can be considered the optimal time for the second course of ATG. This tactic allows to get an answer in another 58% of patients who did not respond to the first course of ATG. The probability of an overall 10-year survival rate was 90% (95% confidence interval 83.696.2).


2021 ◽  
Vol 9 ◽  
pp. 2050313X2110155
Author(s):  
Sachio Fujita ◽  
Ryosuke Matsuno ◽  
Naoko Kawabata ◽  
Yumiko Sugishita ◽  
Ryota Kaneko ◽  
...  

Limited salvage chemotherapies are available for relapsed/refractory acute myeloid leukemia. Herein, we described successful reinduction chemotherapy, involving a combination of clofarabine, cyclophosphamide, and etoposide, in a 12-year-old male with relapsed acute myeloid leukemia prior to allogeneic bone marrow transplantation from his father. Although treatment with a combination of fludarabine, cytarabine, granulocyte colony-stimulating factor, idarubicin, and gemtuzumab ozogamicin had no positive effects, the aforementioned clofarabine-based chemotherapy induced complete remission and allowed the transplantation to go ahead. The abovementioned regimen may be useful for induction chemotherapy prior to hematopoietic stem cell transplantation for refractory/relapsed acute myeloid leukemia.


Blood ◽  
1976 ◽  
Vol 48 (6) ◽  
pp. 817-841 ◽  
Author(s):  
R Storb ◽  
ED Thomas ◽  
PL Weiden ◽  
CD Buckner ◽  
RA Clift ◽  
...  

Forty-nine patients with severe aplastic anemia, 33 due to unknown cause, 11 drug or chemical related, 2 associated with hepatitis, 1 with paroxysmal nocturnal hemoglobinuria, and 2 possibly associated with Fanconi syndrome did not show recovery after 0.5–96 (median 2) mo of conventional therapy. Twenty-two were infected and 21 were refractory to random platelet transfusions at the time of admission. All were given marrow grafts from HLA-identical siblings. Forty-five were conditioned for grafting by cyclophosphamide (CY), 50 mg/kg on each of 4 successive days, and four by 1000 rad total body irradiation. All were given intermittent methotrexate therapy within the first 100 days of grafting to modify graft-versus-host disease (GVHD). Three patients died from infection too early to evaluate (days 1–8). Forty-six had marrow engraftment. Of these, 20 are surviving with good peripheral blood counts between 186 and 999 days, and 18 have returned to normal activities. Chronic GCHD is a problem in five. Twelve patients died of infection following rejection of the marrow graft. Twelve patients died with bacterial or fungal infections or interstitial pneumonia and active GVHD or soon following resolution of GVHD. Two patients died with marrow engraftment and no GVHD, one with an interstitial, and the other with a bacterial pneumonia. Thirty-six patients who had received random donor blood transfusions were randomly assigned to receive either CY or procarbazine-antithymocyte globulin-CY as conditioning regimens to test whether the incidence of graft rejection could be decreased. There was no difference in the incidence of graft rejection between the two regimens. In 13 patients with rejection, second transplants were attempted either with the original marrow donor (9 patients) or another HLA-identical sibling (4 patients). Three of these transplants were not evaluable, seven were unsuccessful and three were successful with only one of the three surviving for more than 468 days. In conclusion, the long-term survival of 41% of the patients in the present study is similar to that achieved in our first 24 patients, and confirms the importance of marrow transplantation for the treatment of severe aplastic anemia. Marrow graft rejection, GVHD, and infections continue to be the major causes of failure.


2001 ◽  
Vol 19 (16) ◽  
pp. 3675-3684 ◽  
Author(s):  
Alberto Bosi ◽  
Daniele Laszlo ◽  
Myriam Labopin ◽  
Josy Reffeirs ◽  
Mauricette Michallet ◽  
...  

PURPOSE: Leukemic relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem-cell transplantation (HSCT). To identify prognostic factors affecting the outcome of second HSCT, we performed a retrospective study on patients with acute leukemia (AL) undergoing second HSCT who reported to the Acute Leukemia Working Party of the European Cooperative Group for Blood and Marrow Transplantation registry. PATIENTS AND METHODS: One hundred seventy patients who received second HSCTs for AL experienced relapse after first HSCTs were performed from 1978 to 1997. Status at second HSCT, time between first and second HSCT, conditioning regimen, source of stem cells, treatment-related mortality (TRM), acute graft-versus-host disease (aGVHD), leukemia-free survival (LFS), overall survival (OS), and relapse were considered. RESULTS: Engraftment occurred in 97% of patients. Forty-two patients were alive at last follow-up, with a 5-year OS rate of 26%. The 5-year probability for TRM, LFS, and relapse was 46%, 25%, and 59%, respectively. Grade ≥ 2 aGVHD occurred in 59% of patients, and chronic GVHD occurred in 32%. In multivariate analysis, diagnosis, interval to relapse after first HSCT > 292 days, aGVHD at first HSCT, complete remission status at second HSCT, use of total-body irradiation at second HSCT, acute GVHD at second HSCT, and use of bone marrow as source of stem cells at second HSCT were associated with better outcome. CONCLUSION: Second HSCT represents an effective therapeutic option for AL patients relapsed after allogeneic HSCT, with a 3-year LFS rate of 52% for the subset of patients who experienced relapse more than 292 days after receiving the first HSCT and who were in remission before receiving the second HSCT.


Sign in / Sign up

Export Citation Format

Share Document