scholarly journals In VitroDegradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Naznin Sultana ◽  
Tareef Hayat Khan

This paper investigated the long-termin vitrodegradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA) particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, andin vitrodegradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in thein vitrophysiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-monthin vitrodegradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2016 ◽  
Vol 23 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Sima Shahabi ◽  
Yashar Rezaei ◽  
Fathollah Moztarzadeh ◽  
Farhood Najafi

AbstractWe developed degradable poly(propylene fumarate)/bioactive glass (PPF/BG) composite scaffolds based on a sintered microsphere technique and investigated the effects of BG content on the characteristics of these composite scaffolds. Immersion in a simulated body fluid (SBF) was used to evaluate the surface reactivity of composite scaffolds. The surface of composite scaffolds was covered with hydroxycarbonate apatite layer after 7 days of immersion. Ion concentration analyses revealed a decrease in P concentration and an increase in Si, Ca, and Sr concentrations in SBF immersed with composite scaffolds during the 3-week period. The Ca and P uptake rates decreased after 4 days of incubation. This coincided with the decrease of the Si release rate. These data lend support to the suggestion that the Si released from the BG content of scaffolds present in the polymer matrix was involved in the formation of the Ca-P layer. The evaluation of the in vitro degradation of composite microspheres revealed that the weight of scaffolds remained relatively constant during the first 3 weeks and then started to decrease slowly, losing 10.5% of their initial mass by week 12. Our results support the concept that these new bioactive, degradable composite scaffolds may be used for bone tissue engineering applications.


2021 ◽  
Vol 41 (5) ◽  
pp. 375-386
Author(s):  
Hessam Rezaei ◽  
Mostafa Shahrezaee ◽  
Marziyeh Jalali Monfared ◽  
Sonia Fathi Karkan ◽  
Robabehbeygom Ghafelehbashi

Abstract Here, the role of simvastatin-loaded graphene oxide embedded in polyurethane-polycaprolactone nanofibers for bone tissue engineering has been investigated. The scaffolds were physicochemically and mechanically characterized, and obtained polymeric composites were used as MG-63 cell culture scaffolds. The addition of graphene oxide-simvastatin to nanofibers generates a homogeneous and uniform microstructure as well as a reduction in fiber diameter. Results of water-scaffolds interaction indicated higher hydrophilicity and absorption capacity as a function of graphene oxide addition. Scaffolds’ mechanical properties and physical stability improved after the addition of graphene oxide. Inducing bioactivity after the addition of simvastatin-loaded graphene oxide terminated its capability for hard tissue engineering application, evidenced by microscopy images and phase characterization. Nanofibrous scaffolds could act as a sustained drug carrier. Using the optimal concentration of graphene oxide-simvastatin is necessary to avoid toxic effects on tissue. Results show that the scaffolds are biocompatible to the MG-63 cell and support alkaline phosphatase activity, illustrating their potential use in bone tissue engineering. Briefly, graphene-simvastatin-incorporated in polymeric nanofibers was developed to increase bioactive components’ synergistic effect to induce more bioactivity and improve physical and mechanical properties as well as in vitro interactions for better results in bone repair.


2007 ◽  
Vol 342-343 ◽  
pp. 369-372 ◽  
Author(s):  
S.J. Heo ◽  
S.E. Kim ◽  
Yong Taek Hyun ◽  
D.H. Kim ◽  
Hyang Mi Lee ◽  
...  

This study evaluated the potential of the PCL (poly -caprolactone)/HA(Hydroxyapatite) composite materials as a scaffold for bone regeneration. For this, we fabricated scaffolds utilizing salt leaching method. The PCL/HA composite scaffolds were prepared with various HA contents (20wt%, 40wt%, 60 wt %). To ensure the potential for the scaffolds, porosity tests were conducted along with SEM observations. The porosity decreased with the increase of the contents of HA particles. The porosity of the composite with the highest contents of HA was still adoptable (~85%). In addition, the PCL/HA composite scaffolds were evaluated for their ability of osteogenic differentiation with human bone marrow stromal cell (hBMSC) in vitro. Alkaline phosphatase (ALP) activity, markers for osteoblastic differentiation, and total protein contents were evaluated in hBMSCs following 14 days of cultivation. The addition of HA particles enhanced proliferation of hBMSC during the test. Also, the differentiation ability of the cells was increased as HA particles were added. In this study, we concluded that PCL/HA composite scaffolds has great potential as a scaffold for bone tissue engineering.


Biomaterials ◽  
2020 ◽  
Author(s):  
Mohammad Shariful Islam ◽  
Mohammad Abdulla-Al-Mamun ◽  
Alam Khan ◽  
Mitsugu Todo

The hydroxyapatite [HAp, Ca10(PO4)6(OH)2] has a variety of applications in bone fillers and replacements due to its excellent bioactivity and osteoconductivity. It comprises the main inorganic component of hard tissues. Among the various approaches, a composite approach using several components like biopolymer, gelatin, collagen, and chitosan in the functionalization of scaffolds with HAp has the prospective to be an engineered biomaterial for bone tissue engineering. HAp composite scaffolds have been developed to obtain a material with different functionalities such as surface reactivity, bioactivity, mechanical strength, and capability of drug or growth factor delivery. Several techniques and processes for the synthesis and fabrication of biocompatible HAp composite scaffolds suitable for bone regeneration are addressed here. Further, this chapter described the excellences of various HAp composite scaffolds used in in vitro and in vivo experiments in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document