scholarly journals Uniaxial Bond Stress-Slip Relationship of Reinforcing Bars in Concrete

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sungnam Hong ◽  
Sun-Kyu Park

This paper documents a study carried out on the estimation of the bond stress-slip relationship for reinforced concrete members under axial tension loading. An analytical model is proposed that utilizes the conventional bond stress-slip theories as well as the characteristics of deformed bar and concrete cross-sectional area. An equation for the estimation of the bond stress is formulated as the function of nondimensional factors (e.g., bond stress, slip, etc.). The validity, accuracy, and efficiency of the proposed model are established by comparing the analytical results with the experimental data and the JSCE design codes, as well as the analytical models given by Ikki et al. and Shima. The analytical results presented in this paper indicate that the proposed model can effectively estimate the bond stress-slip relationship of reinforced concrete members under axial tension loading.

2007 ◽  
Vol 13 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Rokas Girdžius ◽  
Gintaris Kaklauskas ◽  
Renata Zamblauskaitė

This paper discusses the load and deflection relationship of reinforced concrete members subjected to axial tension. A new tension stiffening relationship depending on tensile strength of concrete, reinforcement ratio, and the ratio of modulus of elesticity of steel and concrete has been proposed. The results obtained were compared with the numerical test data and the formulas proposed by other authors.


Author(s):  
Angus Murray ◽  
Raymond Ian Gilbert ◽  
Arnaud Castel

The average spacing of primary cracks in a reinforced concrete (RC) member greatly influences its in-service behavior, especially with regard to stiffness and average crack width. Accurate predictions of the average crack spacing are therefore crucial for satisfying serviceability requirements in RC structures. This is particularly the case when relying on analytical models that treat cracks discretely rather than in a smeared fashion. Popular code-based models for primary crack spacing are often wildly inaccurate and may lead to poor predictions of in-service behavior. In this paper, the problem or primary crack formation is approached from a stiffness perspective. The proposed model is based on the results of several experimental tension stiffening studies in the literature, as well as a previous numerical study dealing with the effect on stiffness of non-plane deformation in the neighborhood of primary cracks. The proposed model is compared to some popular code-based models and is shown to better predict average crack spacing for a wide variety of beams, slabs, and tension members.


Author(s):  
T. D. Breitzman ◽  
B. M. Cook ◽  
G. A. Schoeppner ◽  
E. V. Iarve

Benchmark un-notched strength testing was used to characterize material properties for IM6/3501-6 composite material and to establish parameters for critical failure volume (CFV) (see [8]) analysis tools. Critical failure volume was used to predict the strength of scarfed composites, as well as composites having a scarf repair patch. Baseline repairs were created both without and with over-plies. Simplex optimization was performed on the analytical models to determine the repair stacking sequence that would result in the largest tensile strength for the repairs. The repair was optimized in the linear elastic regime, but strength predictions took into account both geometric nonlinearities of the respective materials and the material nonlinearities of the adhesive. Predicted strengths were in good agreement with experimental results, and the resultant optimal designs increased the strength of the repair under uni-axial tensile load by 10–20%.


2006 ◽  
Vol 12 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Abdesselam Zergua ◽  
Mohamed Naimi

This research is achieved in the general frame‐work of the study of the concrete behaviour. It has for objective the development of a numerical tool able to predict the behaviour of reinforced concrete columns with circular and square cross‐sections under an increasing compressive axial load. The concrete behaviour is assumed as elastic‐plastic model with an associated flow rule in compression region and as elastic with tension stiffening behaviour in the tension region. Two yield surfaces have been taken into account according to the Drucker‐Prager and Rankine failure criterions. However, the reinforcing steel is assumed as an elastic strain hardening model. A finite element method using solid cube elements for concrete, and bar elements for the reinforcement have been used. Correlation study between numerical and experimental results is conducted with the objective to establish the validity of the proposed model and identify the significance of the transverse reinforcement volumetric ratio effect on the response of reinforced concrete members. Good agreement has been observed in comparing these results.


2021 ◽  
Vol 10 (2) ◽  
pp. 305-316
Author(s):  
Zara Mazahir ◽  
Zia Rehman

This explanatory research aims to study an association between the factors affecting the performance of banks working in Pakistan. The current study was conducted using a cross-sectional research design, data for this study was collected from 5 private banks of Lahore, Pakistan. A total sample of three hundred bankers was recruited by using a random sampling technique and their ages ranged between 25-45 years. For the analysis of the hypothesis, diverse statistical instruments like PROCESS analysis for mediation and Pearson Product Moment correlation are applied. The results of the study show that employee loyalty, as well as service quality, mediates an association between employee empowerment and financial performance. Numerous other variables influence the financial performance of banks which are not included in this study. The proposed model guides the management in analyzing the service sector's performance.


Sign in / Sign up

Export Citation Format

Share Document