scholarly journals Design and Implementation of a Simulator for Photovoltaic Modules

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kuang-Hui Tang ◽  
Kuei-Hsiang Chao ◽  
Yuan-Wei Chao ◽  
Jyun-Ping Chen

Proposed in this paper is the development of a photovoltaic module simulator, one capable of running an output characteristic simulation under normal operation according to various electrical parameters specified and exhibiting multiple advantages of being low cost, small sized, and easy to implement. In comparison with commercial simulation tools, Pspice and Solar Pro, the simulator developed demonstrates a comparableI-Vas well as aP-Voutput characteristic curve. In addition, a series-parallel configuration of individual modules constitutes a photovoltaic module array, which turns into a photovoltaic power generation system with an integrated power conditioner.

2019 ◽  
Vol 52 (9-10) ◽  
pp. 1308-1318
Author(s):  
Sudipta Basu Pal ◽  
Abhijit Das ◽  
Konika Das (Bhattacharya) ◽  
Dipankar Mukherjee

The photovoltaic module testing apparatus being used presently for photovoltaic measurements acts principally on the method of photovoltaic module loading with resistive, capacitive, and electronic elements. In this work, a new method is described using a supercapacitor as the load to the photovoltaic module. This technique of characterization has proved to generate reliable V–I characteristics as validated by statistical and mathematical analyses in this article. Heat dissipation affecting the functioning of the photovoltaic modules is a common occurrence with resistive and capacitive loading techniques. It is reduced significantly in this method using supercapacitors, and curve tracing time is extremely modest and easily controllable. In effect, a low-cost, portable, and reliable I–V plotter is developed, which is operational from an embedded systems platform integrated with smart sensors. This I–V tracer has been used for the performance assessment of solar modules ranging from 10 to 100 Wp under varying climatic conditions in the eastern region of India. This test kit so developed in the photovoltaic engineering laboratory at Indian Institute of Engineering Science and Technology, Shibpur, is estimated to be useful for practicing engineers and photovoltaic scientists and in particular for photovoltaic module manufacturers. The performance parameters such as fill factor and performance ratio of photovoltaic modules measured by the device have been found to have almost identical values as the measurements from a reference commercial testing apparatus. The data pertaining to peak wattage as measured by the designed plotter have been found to be closely converging with an industry-friendly YOKOGAWA Power Meter (WT 330). Such peak values of power as measured and claimed by the datasheets will help reduce the uncertainties in measurement, leading to increased confidence of photovoltaic module manufacturers and investors. With this backdrop, the necessary work for scaling up of the low-cost I–V plotter has been taken up for assessing the performance of higher wattage photovoltaic modules.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sakaros Bogning Dongue ◽  
Donatien Njomo ◽  
Lessly Ebengai

This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.


2020 ◽  
Vol 4 (41) ◽  
pp. 51-56
Author(s):  
DMITRIY STREBKOV ◽  
◽  
NATAL’YA FILIPPCHENKOVA ◽  

In the field of energy supply to agro-industrial facilities, there is an increasing interest in the development of structures and engineering systems using renewable energy sources, including solar concentrator thermal and photovoltaic modules that combine photovoltaic modules and solar collectors in one structure. The use of the technology of concentrator heat and photovoltaic modules makes it possible to increase the electrical performance of solar cells by cooling them during operation, and significantly reduces the need for centralized electricity and heat supply to enterprises of the agroindustrial complex. (Research purpose) The research purpose is in numerical modeling of thermal processes occurring in a solar concentrator heat-photovoltaic module. (Materials and methods) Authors used analytical methods for mathematical modeling of a solar concentrator heat and photovoltaic module. Authors implemented a mathematical model of a solar concentrator heat and photovoltaic module in the ANSYS Fluent computer program. The distribution contours of temperature and pressure of the coolant in the module channel were obtained for different values of the coolant flow rate at the inlet. The verification of the developed model of the module on the basis of data obtained in an analytical way has been performed. (Results and discussion) The results of comparing the calculated data with the results of computer modeling show a high convergence of the information obtained with the use of a computer model, the relative error is within acceptable limits. (Conclusions) The developed design of the solar concentrator heat and photovoltaic module provides effective cooling of photovoltaic cells (the temperature of photovoltaic cells is in the operating range) with a module service life of at least twenty-five years. The use of a louvered heliostat in the developed design of a solar concentrator heat and photovoltaic module can double the performance of the concentrator.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1246 ◽  
Author(s):  
Darragh Lydon ◽  
Myra Lydon ◽  
Rolands Kromanis ◽  
Chuan-Zhi Dong ◽  
Necati Catbas ◽  
...  

Increasing extreme climate events, intensifying traffic patterns and long-term underinvestment have led to the escalated deterioration of bridges within our road and rail transport networks. Structural Health Monitoring (SHM) systems provide a means of objectively capturing and quantifying deterioration under operational conditions. Computer vision technology has gained considerable attention in the field of SHM due to its ability to obtain displacement data using non-contact methods at long distances. Additionally, it provides a low cost, rapid instrumentation solution with low interference to the normal operation of structures. However, even in the case of a medium span bridge, the need for many cameras to capture the global response can be cost-prohibitive. This research proposes a roving camera technique to capture a complete derivation of the response of a laboratory model bridge under live loading, in order to identify bridge damage. Displacement is identified as a suitable damage indicator, and two methods are used to assess the magnitude of the change in global displacement under changing boundary conditions in the laboratory bridge model. From this study, it is established that either approach could detect damage in the simulation model, providing an SHM solution that negates the requirement for complex sensor installations.


Solar Energy ◽  
2018 ◽  
Vol 173 ◽  
pp. 462-469 ◽  
Author(s):  
Tamer Khatib ◽  
Ahmed Ghareeb ◽  
Maan Tamimi ◽  
Mahmoud Jaber ◽  
Saif Jaradat

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2842 ◽  
Author(s):  
Wei Liu ◽  
Bing Liang ◽  
Zhenyuan Jia ◽  
Di Feng ◽  
Xintong Jiang ◽  
...  

High precision position control is essential in the process of parts manufacturing and assembling, where eddy current displacement sensors (ECDSs) are widely used owing to the advantages of non-contact sensing, compact volume, and resistance to harsh conditions. To solve the nonlinear characteristics of the sensors, a high-accuracy calibration method based on linearity adjustment is proposed for ECDSs in this paper, which markedly improves the calibration accuracy and then the measurement accuracy. After matching the displacement value and the output voltage of the sensors, firstly, the sensitivity is adjusted according to the specified output range. Then, the weighted support vector adjustment models with the optimal weight of the zero-scale, mid-scale and full-scale are established respectively to cyclically adjust the linearity of the output characteristic curve. Finally, the final linearity adjustment model is obtained, and both the calibration accuracy and precision are verified by the established calibration system. Experimental results show that the linearity of the output characteristic curve of ECDS adjusted by the calibration method reaches over 99.9%, increasing by 1.9–5.0% more than the one of the original. In addition, the measurement accuracy improves from 11–25 μ m to 1–10 μ m in the range of 6mm, which provides a reliable guarantee for high accuracy displacement measurement.


Author(s):  
Mansour Zegrar ◽  
M’hamed Houari Zerhouni ◽  
Mohamed Tarik Benmessaoud ◽  
Fatima Zohra Zerhouni

In recent years, solar photovoltaic energy is becoming very important in the generation of green electricity. Solar photovoltaic effect directly converts solar radiation into electricity. The output of the photovoltaic module MPV depends on several factors as solar irradiation and cell temperature. A curve tracer is a system used to acquire the PV current-voltage characteristics, in real time, in an efficient manner. The shape of the I-V curve gives useful information about the possible anomalies of a PV device. This paper describes an experimental system developed to measure the current–voltage curve of a MPV under real conditions. The measurement is performed in an automated way. This present paper presents the design, and the construction of I-V simple curve tracer for photovoltaic modules. This device is important for photovoltaic (PV) performance assessment for the measurement, extraction, elaboration and diagnose of entire current-voltage I-V curves for several photovoltaic modules. This system permits to sweep the entire I-V curve, in short time, with different climatic and loads conditions. An experimental test bench is described. This tracer is simple and the experimental results present good performance. Simulation and experimental tests have been carried out. Experimental results presented good performance.


Sign in / Sign up

Export Citation Format

Share Document