scholarly journals Micellar LC Separation of Sesquiterpenic Acids and Their Determination in Valeriana officinalis L. Root and Extracts

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Artem U. Kulikov

A simple micellar liquid chromatography (MLC) method was developed and validated according to ICH Guidelines for the determination of sesquiterpenic acids (valerenic, hydroxyvalerenic, and acetoxyvalerenic acids) in root and rhizome extract from Valeriana officinalis L. and valerian dry hydroalcoholic extract. Samples were analyzed on Nucleosil C18 column (, 5 μm) using an isocratic mobile phase which consisted of Brij 35 (5% (w/v) aqueous solution; pH  by phosphoric acid) and 1-butanol (6% (v/v)); UV detection was at 220 nm. Micellar mobile phase using allows to fully separate valerenic acids within 25 minutes. Linearity for hydroxyvalerenic, acetoxyvalerenic, and valerenic acids was 1.9–27.9, 4.2–63.0, and 6.1–91·3 μg.mL−1, and limit of detection was 0.14, 0.037, and 0.09 μg·mL−1, respectively. Intraday and interday precisions were not less than 2% for all investigated compounds. The proposed method was found to be reproducible and convenient for quantitative analysis of sesquiterpenic acids in valerian root and related preparations.

2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


2017 ◽  
Vol 9 (6) ◽  
pp. 54 ◽  
Author(s):  
Yuliya Kondratova ◽  
Liliya Logoyda ◽  
Yuliia Voloshko ◽  
Ahmed Abdel Megied ◽  
Dmytro Korobko ◽  
...  

Objective: A rapid, simple and sensitive RP-HPLC method was developed and validated for the determination of bisoprolol fumarate in bulk and pharmaceutical dosage form.Methods: Chromatographic separation was achieved within 2.5 min on ACQUITY Arc System, Waters Symmetry C18 column (3.9 mm i.d. X 150 mm, 5 μm particle sizes) using a mobile phase consisted of acetonitrile: phosphate buffer (25:75 v/v) in an isocratic mode at a flow rate of 1.4 ml/min. The pH of the mobile phase was adjusted to 7.0 with orthophosphoric acid and UV detection was set at 226 nm.Results: The retention time for bisoprolol fumarate was found to be 2.09 min. The proposed method was validated according to ICH guidelines with respect to linearity, specificity precision, accuracy and robustness. The limit of detection and limit of quantification are calculated and found to be 0.4825 and 1.4621 μg/ml; respectively.Conclusion: The proposed method can help research studies, quality control and routine analysis with lesser resources available. The results of the assay of pharmaceutical formulation of the developed method are highly reliable and reproducible and is in good agreement with the label claim of the medicines.Keywords: Bisoprolol, High-Performance Liquid Chromatography, Validation, ICH guidelines


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3791
Author(s):  
Ewelina Patyra ◽  
Krzysztof Kwiatek

Rapid chromatographic procedure for quantification of five sulfonamides in medicated feeds are proposed. Satisfactory separation of sulfonamides from medicated feeds was achieved using a Zorbax Eclipse XDB C18 column (4.6 × 150 mm, 5 µm particle size) with a micellar mobile phase consisting of 0.05 M sodium dodecyl sulphate, 0.02 M phosphate buffer, and 6% propan-2-ol (pH 3). UV quantitation was set at 260 nm. The proposed procedure allows the determination of sulfaguanidine, sulfadiazine, sulfamerazine, sulfamethazine, and sulfamethoxazole in medicated feeds for pigs and poultry. Application of the proposed method to the analysis of five pharmaceuticals gave recoveries between 72.7% to 94.7% and coefficients of variations for repeatability and reproducibility between 2.9% to 9.8% respectively, in the range of 200 to 2000 mg/kg sulfonamides in feeds. Limit of detection and limit of quantification were 32.7–56.3 and 54.8–98.4 mg/kg, respectively, depending on the analyte. The proposed procedure for the quantification of sulfonamides is simple, rapid, sensitive, free from interferences and suitable for the routine control of feeds. In the world literature, we did not find the described method of quantitative determination of sulfonamides in medicated feeds with the use of micellar liquid chromatography.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Małgorzata Dołowy ◽  
Alina Pyka

This research study describes the applicability of silica gel 60 RPW18F254plates for the development and validation of new, simple, economic, accurate, and precise RPHPTLC-densitometric method suitable for the quantification of nicotinamide (asVitamin PP) in three marketed preparations. The mobile phase used was methanol-water in volume composition 3 : 7. Detection wavelength was 200 nm. The proposed method was validated according to ICH guidelines and also based on Ferenczi-Fodor and Konieczka reports. Results were found to be linear over a range of 1.00 to 2.00 μg/spot. Limit of detection (LOD) and limit of quantification (LOQ) were 0.15 μg/spot and 0.45 μg/spot, respectively. The percent content of nicotinamide in the investigated preparations was found to be 99.2% (Product 1), 99.3% (Product 2), and 99.4% (Product 3). Developed method is accurate and precise (CV<3%) and may be successfully applied for the quality control of pharmaceutical formulations containing nicotinamide in the presence of its derivatives, such as N,N-diethylnicotinamide, N-methylnicotinamide, and nicotinic acid.


2021 ◽  
Vol 32 (1) ◽  
pp. 70-75
Author(s):  
Simona Gherman ◽  
Daniela Zavastin ◽  
Adrian Şpac ◽  
Alina Diana Panainte

Abstract For the determination of enalapril maleate in tablets a new, simple and economical HPLC method was developed and fully validated. Chromatographic separation was achieved on Hewlett Zorbax SB-C 18 (150 x 4.6 mm, 5 μm) column and the mobile phase consisted of acetonitrile: 0.025 M phosphate buffer adjusted to pH 3 (70:30 v/v) pumped at a flow rate 0.8 mL/min and UV-detection was performed at 210 nm. The proposed method was validated according to ICH guidelines (linearity, limit of detection, limit of quantification, precision, accuracy, recovery and system suitability). The total run time was less than 3 min and the retention time for Enalapril maleate was 2.3 min. The calibration graph was linear in the concentration range between 10 – 100 μg/mL with the correlation coefficient r2 = 0.9998. The developed and validated method was successfully applied to determine the Enalapril maleate in tablets. Therefore, this method proved to be sensitive, specific and reproducible and can be applied for routine analysis of enalapril maleate from pharmaceutical formulation due to its simplicity of application.


2018 ◽  
Vol 15 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bürge Aşçı ◽  
Mesut Koç

Introduction:This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.Experiment:Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.Conclusion:The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (02) ◽  
pp. 16-20
Author(s):  
L Mohankrishna ◽  
◽  
P. J. Reddy ◽  
B. P Reddy. ◽  
P. Navya

A sensitive and precise HPLC procedure has been developed for the assay of amphotericin B in bulk samples and pharmaceutical formulations by using a C18 column [Kromosil, C18, (5 µm, 4.6mm x 250 mm; Make. Waters)], and mobile phase combination is 1% formic acid in water and acetonitrile in ratio of 45:55 V/V. The procedure has been validated as per the ICH guidelines. The λmax of detection was fixed at 407 nm, so that there was less interference from mobile phase with highest sensitivity according to UV analysis. Calibration plots were linear in the range of 10-100 µg/mL and the LOD and LOQ were 0.02 µg/mL and 0.06 µg/mL respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine quality control determination of amphotericin B in different formulations.


2014 ◽  
Vol 68 (11) ◽  
Author(s):  
Pavel Mikuška ◽  
Lukáš Bružeňák ◽  
Zbyněk Večeřa

AbstractA method for the rapid and sensitive determination of peroxyacetyl nitrate (PAN) in air based on a chemiluminescence reaction with an alkaline solution of luminol in the chemiluminescence aerosol detector is described. The PAN is chromatographically separated from nitrogen dioxide and ozone in a packed column filled with 5 % OV-1 on Chromosorb 30/60 and the eluted PAN is detected via the direct reaction with the luminol solution consisting of 0.002 mol L−1 luminol, 1 vol. % Brij-35 and 0.1 mol L−1 KOH. The limit of detection is 14.9 ng m−3 (3 ppt) of PAN. Alternatively, the PAN after separation is thermally converted to NO2 which is detected by the chemiluminescence reaction with a solution consisting of 0.002 mol L−1 luminol, 0.5 mol L−1 KOH, 0.2 mol L−1 Na2SO3, 0.1 mol L−1 KI, 0.05 mol L−1 EDTA and 0.5 vol. % triton X-100. The alternative approach affords the simultaneous determination of PAN and NO2. The limit of detection is 50 ppt of PAN and 50 ppt of NO2. The time resolution is 3 min. The method was applied to the measurement of ambient peroxyacetyl nitrate in air.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Sign in / Sign up

Export Citation Format

Share Document