scholarly journals Synthesis and Characterization of Dodecylbenzene Sulfonic Acid doped Tetraaniline via Emulsion Polymerization

2012 ◽  
Vol 9 (3) ◽  
pp. 1342-1346 ◽  
Author(s):  
K. Basavaiah ◽  
K. Tirumala Rao ◽  
A. V. Prasada Rao

In this work, we report preparation and characterization of dodecylbenzene sulfonic acid (DBSA) doped tetraaniline via micelles assisted method using ammonium per sulphate (APS) as an oxidant. Here, DBSA act as dopant as well as template for tetraaniline nanostructures. The synthesized DBSA doped tetraaniline have been well characterized by X-ray diffraction patterns, Fourier transform infrared spectroscopy, UV-Visible spectroscopy, Scanning electron microscopy and thermogravimetry. The morphologies of tetraaniline were found to be dependent on molar ratios of N-phenyl-1, 4-phenylenediamine to DBSA. The spectroscopic data indicated that DBSA doped tetraaniline. Thermogravimetry studies revealed that the DBSA doping improved the thermal stability of tetraaniline.

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1042
Author(s):  
Nikita V. Chukanov ◽  
Anatoly N. Sapozhnikov ◽  
Roman Yu. Shendrik ◽  
Marina F. Vigasina ◽  
Ralf Steudel

Five samples of differently colored sodalite-group minerals from gem lazurite deposits were studied by means of electron microprobe and wet chemical analyses, infrared, Raman, electron spin resonance (ESR) and UV-Visible spectroscopy, and X-ray diffraction. Various extra-framework components (SO42−, S2− and Cl− anions, S3•−, S2•− and SO3•− radical anions, H2O, CO2, COS, cis- as well as trans- or gauche-S4 neutral molecules have been identified. It is shown that S3•− and S4 are the main blue and purple chromophores, respectively, whereas the S2•− yellow chromophore and SO3•− blue chromophore play a subordinate role. X-ray diffraction patterns of all samples of sodalite-group minerals from lazurite deposits studied in this work contain superstructure reflections which indicate different kinds of incommensurate modulation of the structures.


2012 ◽  
Vol 557-559 ◽  
pp. 371-374
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang

Nanocomposites of poly(ε-caprolactone) (PCL) and layered double hydroxide (LDH) were prepared by in situ polymerization at low LDHs loadings in this work. The resultants were characterized by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and UV-visible spectroscopy (UV-vis). FTIR showed that the PCL/LDHs nanocomposites were prepared successfully by in situ polymerization and XRD spectra showed that the crystal structure did not change greatly in the presence of LDHS. DSC results confirmed that LDHs could act as nucleating agents. UV-vis spectra showed that LDHs had stronger absorbance peak than LDH. Moreover, the PCL/LDHs nanocomposites had strong anti-ultraviolet effect by introduction of LDHs into polymer matrix.


2008 ◽  
Vol 8 (3) ◽  
pp. 1481-1488 ◽  
Author(s):  
Marguerite Germain ◽  
Philip Fraundorf ◽  
Sam Lin ◽  
Elena A. Guliants ◽  
Christopher E. Bunker ◽  
...  

We describe the synthesis and characterization of srilankite (Ti2ZrO6) nanowires. The nanowires are produced via hydrothermal synthesis with a TiO2/ZrO2 mixture under alkaline conditions. The zirconium titanate nanowires have median diameters of 60 nm and median lengths of 800 nm with the 〈022〉 axis along the length of the nanowire. Electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and electron diffraction are used to characterize the phases and compare nanowires produced with varying molar ratios of Ti and Zr. Electron diffraction patterns produced from single nanowires show highly crystalline nanowires displaying a compositional-ordering superlattice structure with Zr concentrated in bands within the crystal structure. This is in contrast to naturally occurring bulk srilankite where Zr and Ti are randomly substituted within the crystal lattice. Streaking is observed in the electron diffraction patterns suggesting short-range ordering within the superlattice structure.


2012 ◽  
Vol 9 (3) ◽  
pp. 1175-1180 ◽  
Author(s):  
K. Basavaiah ◽  
A. V. Prasada Rao

In this work, we report preparation and characterization of P-toluene sulphonic acid (P-TSA) doped tetraaniline nanorods by micellar assisted method using ammonium per sulphate (APS) as an oxidant. Here, PTSA acts as dopant as well as template for tetraaniline nanostructures. The synthesized tetraaniline nanorods have been well characterized by Fourier transform infrared spectroscopy (FTIR), FT Raman spectroscopy, UV-Visible spectroscopy (UV-Visible), Scanning electron microscopy (SEM) and thermogravimetry. The morphologies of tetraaniline were found to be dependent on molar ratios of N-phenyl-1, 4-phenylenediamine (NPPD) to PTSA. The spectroscopic data indicated that PTSA doped tetraaniline nanorods. Thermogravimetry studies revealed that the PTSA doping improved the thermal stability of tetraaniline nanorods.


2019 ◽  
Vol 12 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Rifat Mohammed Dakhil ◽  
Tayser Sumer Gaaz ◽  
Ahmed Al-Amiery ◽  
Mohd S. Takriff ◽  
Abdul Amir H. Kadhum

Abstract. The present work focuses on the photocatalytic degradation of methyl orange (MO) on erbium trioxide nanoparticles (Er2O3 NPs). In this study, Er2O3 nanoparticles were synthesized and fully characterized via various techniques, including X-ray diffraction, UV–visible spectroscopy and scanning electron microscopy techniques. The results revealed that the photocatalytic activity of the prepared Er2O3 NPs was manifested in MO photodegradation. The optimum efficiency obtained was 16 %.


Author(s):  
Emy Rose Peter ◽  
Jismon Sebastian ◽  
Swapna S. Nair

Lead in our body is toxic and hazardous. Here leadfree Cobalt ferrite and Barium Titanate inks have been prepared and fabricated. The prepared inks remained stable without agglomeration or condensation during preservation. Cobalt Ferrite and Barium Titanate Nano inks have been characterized using X-ray diffraction method and UV Visible Spectroscopy. By the analysis of X-ray diffraction (XRD), the resultant inks were confirmed to be of pure Cobalt Ferrite and Barium Titanate powders with cubic structure and tetragonal structure respectively. Lattice parameters and grain size have been determined by X-ray diffraction method. UV Visible Spectroscopy analysis has been done to obtain the band gap energy of the prepared inks. The preparation and characterization of Cobalt Ferrite and Barium Titanate Nano inks are comprehensively demonstrated in this paper.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Cemil Alkan ◽  
Leyla Aras ◽  
Güngör Gündüz

Abstract A novel type of phthalocyanine polymer, 1,4-diazophenylene-bridged Cuphthalocyanine, was prepared from the diazonium salt of diaminobenzene and Cu(II) 1,8,15,22-tetraaminophthalocyanine. The polymer is partially soluble in tetrahydrofuran, dichloromethane, and dimethylformamide. Characterization of the polymer was performed by IR and UV-visible spectroscopy, X-ray diffraction, ash analysis, viscometry, differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the soluble part of the polymer was determined by ebullioscopy. Electrical conductivity of the polymer and its doped samples were determined by the 4-probe technique. It was found that the electrical conductivity increased up to 10-4 S/cm after doping. The redox behaviour of the polymer was investigated utilizing cyclic voltammetry.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Oscar F. Gonzalez-Belman ◽  
Yazmín Varela ◽  
Marcos Flores-Álamo ◽  
Kazimierz Wrobel ◽  
Silvia Gutierrez-Granados ◽  
...  

The synthesis of four rhodium(II) paddlewheel complexes bearing axial aromatic amines and coumarin ligands, with formula [Rh2(OAc)4(L)2] (L = NH2Mesityl (1), NH2Dip (2), NH2Couma (3), coumarin (4)), prompted by microwave irradiation, was carried out successfully. All of the complexes were characterized by the melting point, elemental analysis, NMR, IR, and UV/Visible spectroscopy. Additionally, the structure of complexes 1-2 and 4 was corroborated by single-crystal X-ray diffraction. Cyclic voltammetry, ESI-MS, and tandem MS analyses were carried out in compound 1 for gaining further insight into its stability. Finally, a DFT study shows that complexes 1–4 are the thermodynamic products, having as intermediates complexes 1′–4′ which, under our experimental conditions, cannot be isolated.


2013 ◽  
Vol 33 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Zafer Koç ◽  
Meltem Çelik ◽  
Müşerref Önal ◽  
Yüksel Sarıkaya ◽  
Yesim Mogulkoc

Abstract A series of intercalated nanocomposites were prepared via in situ polymerization of 2-hydroxyethyl methacrylate (HEMA) between the interlayer spacing of hydrous Na-montmorillonite (Na-MMT) using benzoyl peroxide (Bz2O2) as a radical initiator. X-ray diffraction patterns showed the absence of any intercalation up to 61.7 mass% of HEMA, but anhydrous Na-MMT formed by the hydrophilic effect of HEMA. The interlayer spacing (d001) values of hydrous and anhydrous Na-MMT were calculated as 1.19 and 1.03 nm, respectively. At higher monomer contents, the increase in the value of d001 from 1.19 to 2.01 nm indicated intercalation of polymer in the interlayer spacing of Na-MMT. Besides, transmission electron microscopy results supported the formation of the intercalated nanocomposites. Thermogravimetric analysis showed that the thermal stability of the nanocomposites increased considerably by intercalation of pure poly-HEMA. Specific surface area and specific nanopore volume of the nanocomposites decreased with the increasing of the monomer content taken by the preparations. The decrease is due to the nonporous nature of the polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document