scholarly journals Preparation and Characterization of P-TSA Doped Tetraaniline NanorodsviaMicellar-Assisted Method

2012 ◽  
Vol 9 (3) ◽  
pp. 1175-1180 ◽  
Author(s):  
K. Basavaiah ◽  
A. V. Prasada Rao

In this work, we report preparation and characterization of P-toluene sulphonic acid (P-TSA) doped tetraaniline nanorods by micellar assisted method using ammonium per sulphate (APS) as an oxidant. Here, PTSA acts as dopant as well as template for tetraaniline nanostructures. The synthesized tetraaniline nanorods have been well characterized by Fourier transform infrared spectroscopy (FTIR), FT Raman spectroscopy, UV-Visible spectroscopy (UV-Visible), Scanning electron microscopy (SEM) and thermogravimetry. The morphologies of tetraaniline were found to be dependent on molar ratios of N-phenyl-1, 4-phenylenediamine (NPPD) to PTSA. The spectroscopic data indicated that PTSA doped tetraaniline nanorods. Thermogravimetry studies revealed that the PTSA doping improved the thermal stability of tetraaniline nanorods.

2019 ◽  
Vol 824 ◽  
pp. 163-167
Author(s):  
Pema Dechen ◽  
Ekasith Somsook

In this report, synthesis and characterization of gold nanoparticles (AuNPs) from gold leaf by electrolysis in two different media (gel and paper) in presence of sodium chloride (NaCl), glucose (C6H12O6) and polyvinyl pyrrolidone (PVP) at room temperature were investigated. Graphite was used as two electrodes, NaCl was used as an electrolyte, C6H12O6 was used as reducing agent and PVP was used as stabilizer to control the aggregation of the nanoparticles. UV-Visible spectroscopy (UV-Vis) and scanning electron microscopy (SEM) were used to confirm the characteristics and morphologies of the synthesized AuNPs.


2012 ◽  
Vol 9 (3) ◽  
pp. 1342-1346 ◽  
Author(s):  
K. Basavaiah ◽  
K. Tirumala Rao ◽  
A. V. Prasada Rao

In this work, we report preparation and characterization of dodecylbenzene sulfonic acid (DBSA) doped tetraaniline via micelles assisted method using ammonium per sulphate (APS) as an oxidant. Here, DBSA act as dopant as well as template for tetraaniline nanostructures. The synthesized DBSA doped tetraaniline have been well characterized by X-ray diffraction patterns, Fourier transform infrared spectroscopy, UV-Visible spectroscopy, Scanning electron microscopy and thermogravimetry. The morphologies of tetraaniline were found to be dependent on molar ratios of N-phenyl-1, 4-phenylenediamine to DBSA. The spectroscopic data indicated that DBSA doped tetraaniline. Thermogravimetry studies revealed that the DBSA doping improved the thermal stability of tetraaniline.


2018 ◽  
Vol 930 ◽  
pp. 224-229
Author(s):  
Marcos Antônio Guerra ◽  
Jeferson Prado Swerts ◽  
Mei Abe Funcia ◽  
Neide Aparecida Mariano ◽  
Maria Gabriela Nogueira Campos

Polyethylene terephthalate (PET) fiber is a very versatile fiber that can be produced with different properties, such as antimicrobial activity. This study aims to synthesize antimicrobial PET filaments incorporated with silver nanoparticles immobilized in silica (NPAg-Si) by bulk additive method. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) characterized the obtained filaments at concentrations (w/w) of 0.008%, 0.016%, 0.032%, 0.047% and 0.063% NPAg-Si, in order to identify the nanoparticles and analyze their dispersion in the polymeric matrix. Moreover, thermogravimetric analysis (TGA) was carry out to confirm the presence and concentration of the silver nanoparticles in the filaments as well as the thermal stability of the nanocomposites. The bulk addition method was efficient to produce PET-Silver filaments with silver nanoparticles homogeneously dispersed in the PET matrix.


2015 ◽  
Vol 819 ◽  
pp. 262-267
Author(s):  
Mohammad Mizanur Rahman Khan ◽  
Wan Ahmad Kamil Mahmood ◽  
Yee Keat Wee ◽  
Hanis binti Azizan

The comparison of the influence of CaO and CuO alone and combined CaO/CuO on the diameter, surface morphology and thermal stability of polyaniline (PANI) nanofibers is reported. The possible incorporation of CaO and CuO in PANI was revealed by both fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV–vis). It was found that the diameter of PANI nanofibers varied for the addition of CaO and CuO alone compared to their combined use. Field emission scanning electron microscopy (FESEM) showed that the addition of CaO, CuO and CaO/CuO consistently produce composite material in nanofibers structures. This nanofibers shows regular and uniform surface morphology and without secondary growth and agglomeration of the primary nanofibers. Thermogravimetric analysis (TGA) data showed better thermal stability for all composite materials as compared to PANI nanofibers.


2011 ◽  
Vol 675-677 ◽  
pp. 295-298
Author(s):  
Liang Shao ◽  
Jian Hui Qiu ◽  
Ming Zhu Liu ◽  
Hui Xia Feng ◽  
Guo Hong Zhang ◽  
...  

New types of conducting composites using andalusite as an inorganic substrate and polyaniline as the conducting phase were prepared. The composites exhibited conductivities in the 0.14-2.08 S/cm range, depending on the amount of polyaniline. The thermal stability of andalusite/polyaniline composites were studied by thermogravimetric analysis. The resulting composites were also characterized by using FTIR spectroscopy and scanning electron microscopy.


2021 ◽  
Vol 16 ◽  
pp. 155892502110438
Author(s):  
Parshuram Singh ◽  
Sapna Balayan ◽  
Rajendra Kumar Sarin ◽  
Utkarsh Jain

Fibers are the unit component for product development. They can be divided into two types: synthetic and natural fibers. Recently, emerging nanotechnology has played a vital role in advancing next-generation fabrics. The nanomaterials provide several unique properties such as higher conductivity, self-cleaning, water-resistant, and others. Owing to their advanced properties, the fabrics are being developed by coating and integrating with nanomaterials. Therefore, in the presented work two cotton samples were modified with titanium dioxide (TiO2) and zinc oxide (ZnO). These samples were further examined under various techniques including scanning electron microscopy (SEM), UV-visible spectroscopy, X-ray fluorescence (XRF), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, these samples were evaluated at varying wavelengths with UV light and the obtained results demonstrated that the nano-coated fiber samples can be differentiated at 365 nm.


2021 ◽  
Vol 40 (1) ◽  
pp. 67
Author(s):  
Fatih Bayrak ◽  
Ayhan Oral ◽  
Kadir Ay

Polyurethanes (PUs) are synthesized by the reaction of diisocyanates and diols and are widely used in furniture foams, thermal insulation, coatings, and adhesives. In this work, a 1,2,3-triazole-bridged dioxime (compound 6) as a diol source was synthesized from isomannide via tosylation, azidation, and cyclization-addition and used in the syntheses of new PUs. A new carbohydrate-based linear P-1 was synthesized by the reaction of 6 and 1,6-hexamethylene diisocyanate (1,6-HMDI). Besides, three new linear PUs (P-2, P-3, and P-4) were synthesized by the reaction of 6, isomannide compound (used in different molar ratios), and 1,6-HMDI. The thermal properties of the new PUs were determined by thermogravimetry (TG), their molecular structures were characterized by FTIR, 1H- and 13C-NMR, and the molecular weights of some polymers were determined by GPC/SEC. Additionally, the surface characteristics of the synthesized PUs were examined via scanning electron microscopy (SEM).


2021 ◽  
Vol 43 (1) ◽  
pp. 14-14
Author(s):  
Fazal Akbar Jan Fazal Akbar Jan ◽  
Muhammad Aamir Muhammad Aamir ◽  
Naimat Ullah and Husaain Gulab Naimat Ullah and Husaain Gulab

The synthesized oxide (SnO2) nanoparticles by sol-gel method were characterized using UV-Visible spectroscopy (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-rays diffraction(XRD) and Scanning electron microscopy(SEM). Using X-rays diffraction analysis different parameter were calculated such as crystallite size, d-spacing, dislocation density, number of unit cell, cell volume, morphological index, micro strain and instrumental broadening. The average particle size was 28.396 nm. Scanning electron microscopy revealed that SnO2 nanopartcles are uniformly distributed. Optical properties such as band gap (energy gap = 3.6 eV) was calculated from UV-Visible spectroscopy. The characterized particles were used as photocatalyst for the degradation of Eosin dye in aqueous solution under UV light. The effect of different parameters i.e irradiation time, initial dye concentration, pH of the medium and catalyst weight on percent degradation was also studied. Mmaximum dye degradation was found at 220 minutes time interval that was 92 % using 10 ppm solution. At pH 5 the degradation of dye was found to be 94%. The catalyst dose of 0.06 g was found to be the optimum weight for the best photo catalytic degradation of Eosin Y.


Sign in / Sign up

Export Citation Format

Share Document