scholarly journals Chemical Recruitment for Foraging in Ants (Formicidae) and Termites (Isoptera): A Revealing Comparison

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Klaus Jaffe ◽  
Solange Issa ◽  
Cristina Sainz-Borgo

All termites secrete trail pheromones from their sternal gland, whereas ants use a variety of glands for this purpose. This and the diversity of chemical compounds that serve as trail pheromones among ants, and the uniformity of chemicals among termite trails, suggest a different evolutionary historical dynamics for the development of chemical mass recruitment in both taxa. Termites in addition show pheromonal parsimony. This suggest a single evolutionary origin of pheromone trails in Isoptera, whereas chemical mass recruitment among Formicidae seems to have evolved many times and in different ways. Despite these very different evolutionary histories, both taxa evolved chemical recruitment systems involving attractants and orientation signals, and at least two divergent decision making system for recruitment. This evolutionary analogy suggests that chemical mass recruitment is constraint by fundamental physical dynamic laws. Artificial intelligence including “mass intelligence” and “ant intelligence”, emulates mass recruitment in interacting virtual agents in search of optimal solutions. This approach, however, has copied only the “Democratic” recruitment dynamics with a single compound pheromone. Ant and termite evolution shows more sophisticated recruitment dynamics which, if understood properly, will improve our understanding of nature and applications of artificial “swarm intelligence”.

2020 ◽  
Vol 113 (6) ◽  
pp. 2941-2949
Author(s):  
Yongyong Gao ◽  
Qiuying Huang ◽  
Huan Xu

Abstract Sophisticated social behaviors in termite colonies are mainly regulated via chemical communication of a wide range of pheromones. Trail pheromones play important roles in foraging behavior and building tunnels and nests in termites. However, it is almost unclear how termites perceive trail pheromones. Here, we cloned and sequenced of olfactory co-receptor (Orco) genes from the two termites Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae) and Odontotermes formosanus (Shiraki) (Isoptera: Termitidae), and then examined their responses to trail pheromones after silencing Orco through RNA interference (RNAi). We found that Orco knockdown impaired their ability to perceive trail pheromones and resulted in the disability of following pheromone trails in the two termite species. Our locomotion behavior assays further showed that Orco knockdown significantly decreased the distance and velocity in the two termite species, but significantly increased the angular velocity and turn angle in the termite R. chinensis. These findings strongly demonstrated that Orco is essential for termites to perceive their trail pheromones, which provides a potential way to control termite pests by damaging olfactory system.


2017 ◽  
Vol 284 (1853) ◽  
pp. 20170121 ◽  
Author(s):  
Xiao-Lan Wen ◽  
Ping Wen ◽  
Cecilia A. L. Dahlsjö ◽  
David Sillam-Dussès ◽  
Jan Šobotník

Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversa . O. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis , Macrotermes yunnanensis , Ancistrotermes dimorphus ). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3 Z )-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3 Z,6Z )-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species.


2014 ◽  
Vol 9 (8) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Xim Cerdá ◽  
Louise van Oudenhove ◽  
Carlos Bernstein ◽  
Raphaël R. Boulay

Ants use many different chemical compounds to communicate with their nestmates. Foraging success depends on how efficiently ants communicate the presence of food and thus recruit workers to exploit the food resource. Trail pheromones, produced by different exocrine glands, are a key part of ant foraging strategies. By combing through the literature, we compiled a list of the identity and glandular origin of the chemical compounds found in the trail pheromones of 75 different ant species. Of the 168 compounds identified, more than 40% are amines. In the subfamily Myrmicinae, trail pheromones are mostly produced in the venom gland, while in the subfamily Formicinae, they come from the rectal gland.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Muhammad Javaid ◽  
Hassan Zafar ◽  
Amer Aljaedi ◽  
Abdulaziz Mohammad Alanazi

Metric dimension is one of the distance-based parameter which is frequently used to study the structural and chemical properties of the different networks in the various fields of computer science and chemistry such as image processing, pattern recognition, navigation, integer programming, optimal transportation models, and drugs discovery. In particular, it is used to find the locations of robots with respect to shortest distance among the destinations, minimum consumption of time, and lesser number of the utilized nodes and to characterize the chemical compounds having unique presentation in molecular networks. The fractional metric dimension being a latest developed weighted version of the metric dimension is used in the distance-related problems of the aforementioned fields to find their nonintegral optimal solutions. In this paper, we have formulated the local resolving neighborhoods with their cardinalities for all the edges of the convex polytopes networks to compute their local fractional metric dimensions in the form of exact values and sharp bounds. Moreover, the boundedness of all the obtained results is also proved.


Author(s):  
R. Courtoy ◽  
L.J. Simar ◽  
J. Christophe

Several chemical compounds induce amine liberation from mast cells but do not necessarily provoque the granule expulsion. For example, poly-dl-lysine induces modifications of the cellular membrane permeability which promotes ion exchange at the level of mast cell granules. Few of them are expulsed but the majority remains in the cytoplasm and appears less dense to the electrons. A cytochemical analysis has been performed to determine the composition of these granules after the polylysine action.We have previously reported that it was possible to demonstrate polyanions on epon thin sections using a cetylpyridinium ferric thiocyanate method. Organic bases are selectively stained with cobalt thiocyanate and the sulfhydryle groups are characterized with a silver methenamine reaction. These techniques permit to reveal the mast cell granule constituents, i.e. heparin, biogenic amines and basic proteins.


Author(s):  
E. I. Alessandrini ◽  
M. O. Aboelfotoh

Considerable interest has been generated in solid state reactions between thin films of near noble metals and silicon. These metals deposited on Si form numerous stable chemical compounds at low temperatures and have found applications as Schottky barrier contacts to silicon in VLSI devices. Since the very first phase that nucleates in contact with Si determines the barrier properties, the purpose of our study was to investigate the silicide formation of the near noble metals, Pd and Pt, at very thin thickness of the metal films on amorphous silicon.Films of Pd and Pt in the thickness range of 0.5nm to 20nm were made by room temperature evaporation on 40nm thick amorphous Si films, which were first deposited on 30nm thick amorphous Si3N4 membranes in a window configuration. The deposition rate was 0.1 to 0.5nm/sec and the pressure during deposition was 3 x 10 -7 Torr. The samples were annealed at temperatures in the range from 200° to 650°C in a furnace with helium purified by hot (950°C) Ti particles. Transmission electron microscopy and diffraction techniques were used to evaluate changes in structure and morphology of the phases formed as a function of metal thickness and annealing temperature.


2019 ◽  
Vol 30 (4) ◽  
pp. 243-249
Author(s):  
Ronja Weiblen ◽  
Melanie Jonas ◽  
Sören Krach ◽  
Ulrike M. Krämer

Abstract. Research on the neural mechanisms underlying Gilles de la Tourette syndrome (GTS) has mostly concentrated on abnormalities in basal ganglia circuits. Recent alternative accounts, however, focused more on social and affective aspects. Individuals with GTS show peculiarities in their social and affective domain, including echophenomena, coprolalia, and nonobscene socially inappropriate behavior. This article reviews the experimental and theoretical work done on the social symptoms of GTS. We discuss the role of different social cognitive and affective functions and associated brain networks, namely, the social-decision-making system, theory-of-mind functions, and the so-called “mirror-neuron” system. Although GTS affects social interactions in many ways, and although the syndrome includes aberrant social behavior, the underlying cognitive, affective, and neural processes remain to be investigated.


Decision ◽  
2016 ◽  
Vol 3 (1) ◽  
pp. 40-53 ◽  
Author(s):  
Peter C. Pantelis ◽  
Timothy Gerstner ◽  
Kevin Sanik ◽  
Ari Weinstein ◽  
Steven A. Cholewiak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document