scholarly journals An Energy Conserving Numerical Scheme for the Dynamics of Hyperelastic Rods

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Thorsten Fütterer ◽  
Axel Klar ◽  
Raimund Wegener

A numerical method for special Cosserat rods based on Antman's description Antman, 2005 is developed for hyperelastic materials and potential forces. This method preserves the relevant properties of the underlying PDE system, namely, the orthonormality of the directors and the conservation of the energy.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1571
Author(s):  
Francisco J. Fernández ◽  
F. Adrián F. Tojo

This work is devoted to the obtaining of a new numerical scheme based on quadrature formulae for the Lebesgue–Stieltjes integral for the approximation of Stieltjes ordinary differential equations. This novel method allows us to numerically approximate models based on Stieltjes ordinary differential equations for which no explicit solution is known. We prove several theoretical results related to the consistency, convergence, and stability of the numerical method. We also obtain the explicit solution of the Stieltjes linear ordinary differential equation and use it to validate the numerical method. Finally, we present some numerical results that we have obtained for a realistic population model based on a Stieltjes differential equation and a system of Stieltjes differential equations with several derivators.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zain ul Abdeen ◽  
Mujeeb ur Rehman

PurposeThe purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear Hadamard-type fractional differential equations.Design/methodology/approachThe aim of this paper is to develop a numerical scheme for numerical solutions of Hadamard-type fractional differential equations. The classical Haar wavelets are modified to align them with Hadamard-type operators. Operational matrices are derived and used to convert differential equations to systems of algebraic equations.FindingsThe upper bound for error is estimated. With the help of quasilinearization, nonlinear problems are converted to sequences of linear problems and operational matrices for modified Haar wavelets are used to get their numerical solution. Several numerical examples are presented to demonstrate the applicability and validity of the proposed method.Originality/valueThe numerical method is purposed for solving Hadamard-type fractional differential equations.


2009 ◽  
Vol 131 (1) ◽  
Author(s):  
Kai Diethelm

Standard methods for the numerical calculation of fractional derivatives can be slow and memory consuming due to the nonlocality of the differential operators. Yuan and Agrawal (2002, “A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives,” ASME J. Vibr. Acoust., 124, pp. 321–324) have proposed a more efficient approach for operators whose order is between 0 and 1 that differs substantially from the traditional concepts. It seems, however, that the accuracy of the results can be poor. We modify the approach, adapting it better to the properties of the problem, and show that this leads to a significantly improved quality. Our idea also works for operators of order greater than 1.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
MohammadHossein Derakhshan

In this article, a numerical method based on the shifted Chebyshev functions for the numerical approximation of the coupled nonlinear variable-order fractional sine-Gordon equations is shown. The variable-order fractional derivative is considered in the sense of Caputo-Prabhakar. To solve the problem, first, we obtain the operational matrix of the Caputo-Prabhakar fractional derivative of shifted Chebyshev polynomials. Then, this matrix and collocation method are used to reduce the solution of the nonlinear coupled variable-order fractional sine-Gordon equations to a system of algebraic equations which is technically simpler for handling. Convergence and error analysis are examined. Finally, some examples are given to test the proposed numerical method to illustrate the accuracy and efficiency of the proposed method.


2021 ◽  
Vol 5 (3) ◽  
pp. 111
Author(s):  
Samaneh Soradi-Zeid ◽  
Mehdi Mesrizadeh ◽  
Carlo Cattani

This paper introduces an efficient numerical scheme for solving a significant class of fractional differential equations. The major contributions made in this paper apply a direct approach based on a combination of time discretization and the Laplace transform method to transcribe the fractional differential problem under study into a dynamic linear equations system. The resulting problem is then solved by employing the numerical method of the quadrature rule, which is also a well-developed numerical method. The present numerical scheme, which is based on the numerical inversion of Laplace transform and equal-width quadrature rule is robust and efficient. Some numerical experiments are carried out to evaluate the performance and effectiveness of the suggested framework.


2014 ◽  
Vol 14 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Neville J. Ford ◽  
Maria L. Morgado ◽  
Magda Rebelo

Abstract. In this paper we present a shooting algorithm to solve fractional terminal (or boundary) value problems. We provide a convergence analysis of the numerical method, derived based upon properties of the equation being solved and without the need to impose smoothness conditions on the solution. The work is a sequel to our recent investigation where we constructed a nonpolynomial collocation method for the approximation of the solution to fractional initial value problems. Here we show that the method can be adapted for the effective approximation of the solution of terminal value problems. Moreover, we compare the efficiency of this numerical scheme against other existing methods.


Author(s):  
Neville Ford ◽  
M. Manuela Rodrigues ◽  
Nelson Vieira

AbstractThis work focuses on an investigation of the (n+1)-dimensional time-dependent fractional Schrödinger type equation. In the early part of the paper, the wave function is obtained using Laplace and Fourier transform methods and a symbolic operational form of the solutions in terms of Mittag-Leffler functions is provided. We present an expression for the wave function and for the quantum mechanical probability density. We introduce a numerical method to solve the case where the space component has dimension two. Stability conditions for the numerical scheme are obtained.


1994 ◽  
Vol 1 (6) ◽  
pp. 569-583
Author(s):  
Sung-Hoon Kim ◽  
Youn-sik Park

An improved finite difference type numerical method to solve partial differential equations for one-dimensional (1-D) structure is proposed. This numerical scheme is a kind of a single-step, second-order accurate and implicit method. The stability, consistency, and convergence are examined analytically with a second-order hyperbolic partial differential equation. Since the proposed numerical scheme automatically satisfies the natural boundary conditions and at the same time, all the partial differential terms at boundary points are directly interpretable to their physical meanings, the proposed numerical scheme has merits in computing 1-D structural dynamic motion over the existing finite difference numeric methods. Using a numerical example, the suggested method was proven to be more accurate and effective than the well-known central difference method. The only limitation of this method is that it is applicable to only 1-D structure.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Shengwu Zhou ◽  
Wei Li ◽  
Yu Wei ◽  
Cui Wen

A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.


Sign in / Sign up

Export Citation Format

Share Document