scholarly journals Multipath Adaptive Tabu Search for a Vehicle Control Problem

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Jukkrit Kluabwang ◽  
Deacha Puangdownreong ◽  
Sarawut Sujitjorn

Tabu search has become acceptable worldwide as one of the most efficient intelligent searches applied to various real-world problems. There have been different modifications made to the generic tabu search in recent years to achieve better performances. Among those reviewed in the introduction of this paper, the adaptive tabu search (ATS) has incorporated the backtracking and the adaptive search radius mechanisms that help accelerate the search and release it from a local solution lock. The paper explains an enhancement made to the ATS to accomplish multipath ATS (MATS) algorithms. Performances of the ATS and the MATS are evaluated using surface optimization problems, and results are presented in the paper. Finally, the MATS is applied to solve a real-world vehicle control problem.

2021 ◽  
Vol 52 (1) ◽  
pp. 12-15
Author(s):  
S.V. Nagaraj

This book is on algorithms for network flows. Network flow problems are optimization problems where given a flow network, the aim is to construct a flow that respects the capacity constraints of the edges of the network, so that incoming flow equals the outgoing flow for all vertices of the network except designated vertices known as the source and the sink. Network flow algorithms solve many real-world problems. This book is intended to serve graduate students and as a reference. The book is also available in eBook (ISBN 9781316952894/US$ 32.00), and hardback (ISBN 9781107185890/US$99.99) formats. The book has a companion web site www.networkflowalgs.com where a pre-publication version of the book can be downloaded gratis.


2021 ◽  
Author(s):  
Mohammad Shehab ◽  
Laith Abualigah

Abstract Multi-Verse Optimizer (MVO) algorithm is one of the recent metaheuristic algorithms used to solve various problems in different fields. However, MVO suffers from a lack of diversity which may trapping of local minima, and premature convergence. This paper introduces two steps of improving the basic MVO algorithm. The first step using Opposition-based learning (OBL) in MVO, called OMVO. The OBL aids to speed up the searching and improving the learning technique for selecting a better generation of candidate solutions of basic MVO. The second stage, called OMVOD, combines the disturbance operator (DO) and OMVO to improve the consistency of the chosen solution by providing a chance to solve the given problem with a high fitness value and increase diversity. To test the performance of the proposed models, fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems, and seven CEC 2011 real-world problems were used in both phases of the enhancement. The second step, known as OMVOD, incorporates the disruption operator (DO) and OMVO to improve the accuracy of the chosen solution by giving a chance to solve the given problem with a high fitness value while also increasing variety. Fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems and seven CEC 2011 real-world problems were used in both phases of the upgrade to assess the accuracy of the proposed models.


Author(s):  
Kento Uemura ◽  
◽  
Isao Ono

This study proposes a new real-coded genetic algorithm (RCGA) taking account of extrapolation, which we call adaptive extrapolation RCGA (AEGA). Real-world problems are often formulated as black-box function optimization problems and sometimes have ridge structures and implicit active constraints. mAREX/JGG is one of the most powerful RCGAs that performs well against these problems. However, mAREX/JGG has a problem of search inefficiency. To overcome this problem, we propose AEGA that generates offspring outside the current population in a more stable manner than mAREX/JGG. Moreover, AEGA adapts the width of the offspring distribution automatically to improve its search efficiency. We evaluate the performance of AEGA using benchmark problems and show that AEGA finds the optimum with fewer evaluations than mAREX/JGG with a maximum reduction ratio of 45%. Furthermore, we apply AEGA to a lens design problem that is known as a difficult real-world problem and show that AEGA reaches the known best solution with approximately 25% fewer evaluations than mAREX/JGG.


2020 ◽  
pp. 48-60
Author(s):  
Abdel Nasser H. Zaied ◽  
Mahmoud Ismail ◽  
Salwa El-Sayed ◽  
◽  
◽  
...  

Optimization is a more important field of research. With increasing the complexity of real-world problems, the more efficient and reliable optimization algorithms vital. Traditional methods are unable to solve these problems so, the first choice for solving these problems becomes meta-heuristic algorithms. Meta-heuristic algorithms proved their ability to solve more complex problems and giving more satisfying results. In this paper, we introduce the more popular meta-heuristic algorithms and their applications in addition to providing the more recent references for these algorithms.


2018 ◽  
Vol 26 (3) ◽  
pp. 507-533 ◽  
Author(s):  
M. R. Przybylek ◽  
A. Wierzbicki ◽  
Z. Michalewicz

Real-world optimization problems have been studied in the past, but the work resulted in approaches tailored to individual problems that could not be easily generalized. The reason for this limitation was the lack of appropriate models for the systematic study of salient aspects of real-world problems. The aim of this article is to study one of such aspects: multi-hardness. We propose a variety of decomposition-based algorithms for an abstract multi-hard problem and compare them against the most promising heuristics.


2015 ◽  
Vol 6 (6) ◽  
pp. 677-688
Author(s):  
Kim C. Long ◽  
William S Duff ◽  
John W Labadie ◽  
Mitchell J Stansloski ◽  
Walajabad S Sampath ◽  
...  

Purpose – The purpose of this paper is to present a real world application of an innovative hybrid system reliability optimization algorithm combining Tabu search with an evolutionary algorithm (TSEA). This algorithm combines Tabu search and Genetic algorithm to provide a more efficient search method. Design/methodology/approach – The new algorithm is applied to an aircraft structure to optimize its reliability and maintain its structural integrity. For retrofitting the horizontal stabilizer under severe stall buffet conditions, a decision support system (DSS) is developed using the TSEA algorithm. This system solves a reliability optimization problem under cost and configuration constraints. The DSS contains three components: a graphical user interface, a database and several modules to provide the optimized retrofitting solutions. Findings – The authors found that the proposed algorithm performs much better than state-of-the-art methods such as Strength Pareto Evolutionary Algorithms on bench mark problems. In addition, the proposed TSEA method can be easily applied to complex real world optimization problem with superior performance. When the full combination of all input variables increases exponentially, the DSS become very efficient. Practical implications – This paper presents an application of the TSEA algorithm for solving nonlinear multi-objective reliability optimization problems embedded in a DSS. The solutions include where to install doublers and stiffeners. Compromise programming is used to rank all non-dominant solutions. Originality/value – The proposed hybrid algorithm (TSEA) assigns fitness based upon global dominance which ensures its convergence to the non-dominant front. The high efficiency of this algorithm came from using Tabu list to guidance the search to the Pareto-optimal solutions.


2020 ◽  
Vol 34 (02) ◽  
pp. 1460-1467
Author(s):  
Benjamin Doerr ◽  
Carola Doerr ◽  
Aneta Neumann ◽  
Frank Neumann ◽  
Andrew Sutton

Submodular optimization plays a key role in many real-world problems. In many real-world scenarios, it is also necessary to handle uncertainty, and potentially disruptive events that violate constraints in stochastic settings need to be avoided. In this paper, we investigate submodular optimization problems with chance constraints. We provide a first analysis on the approximation behavior of popular greedy algorithms for submodular problems with chance constraints. Our results show that these algorithms are highly effective when using surrogate functions that estimate constraint violations based on Chernoff bounds. Furthermore, we investigate the behavior of the algorithms on popular social network problems and show that high quality solutions can still be obtained even if there are strong restrictions imposed by the chance constraint.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Junhua Ku ◽  
Fei Ming ◽  
Wenyin Gong

In the real-world, symmetry or asymmetry widely exists in various problems. Some of them can be formulated as constrained multi-objective optimization problems (CMOPs). During the past few years, handling CMOPs by evolutionary algorithms has become more popular. Lots of constrained multi-objective optimization evolutionary algorithms (CMOEAs) have been proposed. Whereas different CMOEAs may be more suitable for different CMOPs, it is difficult to choose the best one for a CMOP at hand. In this paper, we propose an ensemble framework of CMOEAs that aims to achieve better versatility on handling diverse CMOPs. In the proposed framework, the hypervolume indicator is used to evaluate the performance of CMOEAs, and a decreasing mechanism is devised to delete the poorly performed CMOEAs and to gradually determine the most suitable CMOEA. A new CMOEA, namely ECMOEA, is developed based on the framework and three state-of-the-art CMOEAs. Experimental results on five benchmarks with totally 52 instances demonstrate the effectiveness of our approach. In addition, the superiority of ECMOEA is verified through comparisons to seven state-of-the-art CMOEAs. Moreover, the effectiveness of ECMOEA on the real-world problems is also evaluated for eight instances.


2020 ◽  
Vol 11 (4) ◽  
pp. 16-37
Author(s):  
Waqas Haider Bangyal ◽  
Jamil Ahmad ◽  
Hafiz Tayyab Rauf

The Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique encouraged from the intrinsic manner of bee swarm seeking for their food source. With flexibility for numerical experimentation, the PSO algorithm has been mostly used to resolve diverse kind of optimization problems. The PSO algorithm is frequently captured in local optima meanwhile handling the complex real-world problems. Many authors improved the standard PSO algorithm with different mutation strategies but an exhausted comprehensive overview about mutation strategies is still lacking. This article aims to furnish a concise and comprehensive study of problems and challenges that prevent the performance of the PSO algorithm. It has tried to provide guidelines for the researchers who are active in the area of the PSO algorithm and its mutation strategies. The objective of this study is divided into two sections: primarily to display the improvement of the PSO algorithm with mutation strategies that may enhance the performance of the standard PSO algorithm to great extent and secondly, to motivate researchers and developers to use the PSO algorithm to solve the complex real-world problems. This study presents a comprehensive survey of the various PSO algorithms based on mutation strategies. It is anticipated that this survey would be helpful to study the PSO algorithm in detail for researchers.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Hernán Peraza-Vázquez ◽  
Adrián Peña-Delgado ◽  
Prakash Ranjan ◽  
Chetan Barde ◽  
Arvind Choubey ◽  
...  

This paper proposes a new meta-heuristic called Jumping Spider Optimization Algorithm (JSOA), inspired by Arachnida Salticidae hunting habits. The proposed algorithm mimics the behavior of spiders in nature and mathematically models its hunting strategies: search, persecution, and jumping skills to get the prey. These strategies provide a fine balance between exploitation and exploration over the solution search space and solve global optimization problems. JSOA is tested with 20 well-known testbench mathematical problems taken from the literature. Further studies include the tuning of a Proportional-Integral-Derivative (PID) controller, the Selective harmonic elimination problem, and a few real-world single objective bound-constrained numerical optimization problems taken from CEC 2020. Additionally, the JSOA’s performance is tested against several well-known bio-inspired algorithms taken from the literature. The statistical results show that the proposed algorithm outperforms recent literature algorithms and is capable to solve challenging real-world problems with unknown search space.


Sign in / Sign up

Export Citation Format

Share Document