scholarly journals Creative Carbon Accounting—A Reply to “The Wood, the Trees, or the Forest? Carbon in Trees in Tasmanian State Forest: A Response to Comments”

2012 ◽  
Vol 2012 ◽  
pp. 1-3
Author(s):  
Christopher Dean

Moroni et al. (2012) made forty claims which misrepresent my earlier reply to their work (Dean, 2011) and if left unrefuted, might mislead all but the most expert reader—I cover seven of the most important ones here. Firstly, in my earlier paper I had calculated a conservative carbon deficit in State forests due to logging of the most-targeted forest types—mature wet-eucalypt—by clearfell, burn and sow to yield even-aged eucalypt regeneration. That deficit was conservative as a range of stand ages were used even though most carbon flux through logging has been from the old-growth subset. It was additionally conservative at the landscape-scale as inclusion of conversion to plantation and logging of other primary-forest types would have yielded a larger carbon deficit, not a smaller one, as implied in Moroni et al. (2012). Secondly, their claim that I applied “carbon saturation” at the landscape-scale is incorrect. Instead I applied carbon carrying capacity at that scale and included different stands ages in its calculation (by definition). Conversely, Moroni et al. (2012) produce the “confusion” which they claim to observe by advocating the use of “carbon saturation” at the landscape-scale, which can have no practical usage.

2015 ◽  
Author(s):  
Christopher W. Woodall ◽  
John W. Coulston ◽  
Grant M. Domke ◽  
Brian F. Walters ◽  
David N. Wear ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 436
Author(s):  
Bruno D. V. Marino ◽  
Nahuel Bautista ◽  
Brandt Rousseaux

Forest carbon sequestration is a widely accepted natural climate solution. However, methods to determine net carbon offsets are based on commercial carbon proxies or CO2 eddy covariance research with limited methodological comparisons. Non-CO2 greenhouse gases (GHG) (e.g., CH4, N2O) receive less attention in the context of forests, in part, due to carbon denominated proxies and to the cost for three-gas eddy covariance platforms. Here we describe and analyze results for direct measurement of CO2, CH4, and N2O by eddy covariance and forest carbon estimation protocols at the Howland Forest, ME, the only site where these methods overlap. Limitations of proxy-based protocols, including the exclusion of sink terms for non-CO2 GHGs, applied to the Howland project preclude multi-gas forest products. In contrast, commercial products based on direct measurement are established by applying molecule-specific social cost factors to emission reductions creating a new forest offset (GHG-SCF), integrating multiple gases into a single value of merit for forest management of global warming. Estimated annual revenue for GHG-SCF products, applicable to the realization of a Green New Deal, range from ~$120,000 USD covering the site area of ~557 acres in 2021 to ~$12,000,000 USD for extrapolation to 40,000 acres in 2040, assuming a 3% discount rate. In contrast, California Air Resources Board compliance carbon offsets determined by the Climate Action Reserve protocol show annual errors of up to 2256% relative to eddy covariance data from two adjacent towers across the project area. Incomplete carbon accounting, offset over-crediting and inadequate independent offset verification are consistent with error results. The GHG-SCF product contributes innovative science-to-commerce applications incentivizing restoration and conservation of forests worldwide to assist in the management of global warming.


Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. E21-E23
Author(s):  
Per Gundersen ◽  
Emil E. Thybring ◽  
Thomas Nord-Larsen ◽  
Lars Vesterdal ◽  
Knute J. Nadelhoffer ◽  
...  

2004 ◽  
Vol 118 (4) ◽  
pp. 504 ◽  
Author(s):  
D. G. Sobey ◽  
W. M. Glen

Our aim was to produce maps showing the distribution on Prince Edward Island of five forest-types previously identified from a TWINSPAN analysis of ground flora data collected at 1200 sampling points in a field survey. For this purpose we had available two databases: one on the composition of the tree canopy of 82,957 forest stands, as determined by photointerpretation of a 1990 aerial photographic survey of the island; the other on the drainage properties of the same stands from a published soil survey. The tree canopy and drainage criteria for sorting these stands into five stand-types were chosen in the light of the equivalent properties of the TWINSPAN forest-types as evident from the field survey. These criteria were perfected in four trial computer-sortings, followed by the computer-printing of maps showing the distribution of the standtypes. These maps, which were then evaluated by comparing them with the properties of the TWINSPAN forest-types, are the first fine-scale maps of the main forest-types of the island. They reveal that, of the three “primary” forest-types, the upland hardwood forest occurs especially in the central and south-eastern hill-lands, as well as in scattered parcels elsewhere, whereas the Black Spruce forest and the wet species-rich woodland occur primarily in areas of lower elevation in the east and west of the island. The two forest-types resulting from human disturbance, the White Spruce woods and the “disturbed forest”, have a more scattered distribution, with the White Spruce woods being found especially in the central and eastern parts of the island and the disturbed forest in the west and east of the island. A secondary aim was to map the conjectured distribution before European settlement of the three primary forest-types: two maps have been produced, one showing the distribution of upland hardwood forest, the other of the wet forest-types.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7606 ◽  
Author(s):  
Bruno D.V. Marino ◽  
Martina Mincheva ◽  
Aaron Doucett

The commercial asset value of sequestered forest carbon is based on protocols employed globally; however, their scientific basis has not been validated. We review and analyze commercial forest carbon protocols, claimed to have reduced net greenhouse gas emissions, issued by the California Air Resources Board and validated by the Climate Action Reserve (CARB-CAR). CARB-CAR forest carbon offsets, based on forest mensuration and model simulation, are compared to a global database of directly measured forest carbon sequestration, or net ecosystem exchange (NEE) of forest CO2. NEE is a meteorologically based method integrating CO2 fluxes between the atmosphere, forest and soils and is independent of the CARB-CAR methodology. Annual carbon accounting results for CAR681 are compared with NEE for the Ameriflux site, Howland Forest Maine, USA, (Ho-1), the only site where both methods were applied contemporaneously, invalidating CARB-CAR protocol offsets. We then test the null hypothesis that CARB-CAR project population data fall within global NEE population values for natural and managed forests measured in the field; net annual gC m−2yr−1 are compared for both protocols. Irrespective of geography, biome and project type, the CARB-CAR population mean is significantly different from the NEE population mean at the 95% confidence interval, rejecting the null hypothesis. The CARB-CAR population exhibits standard deviation ∼5× that of known interannual NEE ranges, is overcrediting biased, incapable of detecting forest transition to net positive CO2 emissions, and exceeds the 5% CARB compliance limit for invalidation. Exclusion of CO2 efflux via soil and ecosystem respiration precludes a valid net carbon accounting result for CARB-CAR and related protocols, consistent with our findings. Protocol invalidation risk extends to vendors and policy platforms such as the United Nations Program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) and the Paris Agreement. We suggest that CARB-CAR and related protocols include NEE methodology for commercial forest carbon offsets to standardize methods, ensure in situ molecular specificity, verify claims of carbon emission reduction and harmonize carbon protocols for voluntary and compliance markets worldwide.


2018 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Xianming Dou ◽  
Yongguo Yang ◽  
Jinhui Luo

Approximating the complex nonlinear relationships that dominate the exchange of carbon dioxide fluxes between the biosphere and atmosphere is fundamentally important for addressing the issue of climate change. The progress of machine learning techniques has offered a number of useful tools for the scientific community aiming to gain new insights into the temporal and spatial variation of different carbon fluxes in terrestrial ecosystems. In this study, adaptive neuro-fuzzy inference system (ANFIS) and generalized regression neural network (GRNN) models were developed to predict the daily carbon fluxes in three boreal forest ecosystems based on eddy covariance (EC) measurements. Moreover, a comparison was made between the modeled values derived from these models and those of traditional artificial neural network (ANN) and support vector machine (SVM) models. These models were also compared with multiple linear regression (MLR). Several statistical indicators, including coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) were utilized to evaluate the performance of the applied models. The results showed that the developed machine learning models were able to account for the most variance in the carbon fluxes at both daily and hourly time scales in the three stands and they consistently and substantially outperformed the MLR model for both daily and hourly carbon flux estimates. It was demonstrated that the ANFIS and ANN models provided similar estimates in the testing period with an approximate value of R2 = 0.93, NSE = 0.91, Bias = 0.11 g C m−2 day−1 and RMSE = 1.04 g C m−2 day−1 for daily gross primary productivity, 0.94, 0.82, 0.24 g C m−2 day−1 and 0.72 g C m−2 day−1 for daily ecosystem respiration, and 0.79, 0.75, 0.14 g C m−2 day−1 and 0.89 g C m−2 day−1 for daily net ecosystem exchange, and slightly outperformed the GRNN and SVM models. In practical terms, however, the newly developed models (ANFIS and GRNN) are more robust and flexible, and have less parameters needed for selection and optimization in comparison with traditional ANN and SVM models. Consequently, they can be used as valuable tools to estimate forest carbon fluxes and fill the missing carbon flux data during the long-term EC measurements.


2004 ◽  
Vol 82 (10) ◽  
pp. 1518-1538 ◽  
Author(s):  
Christine Roberts ◽  
Oluna Ceska ◽  
Paul Kroeger ◽  
Bryce Kendrick

Over 5 years, macrofungi from six habitats in Clayoquot Sound, Vancouver Island, British Columbia, were documented. Habitats were categorized as dune, spruce fringe, old-growth rainforest, second-growth forest, bog, or estuarine. All but the second-growth forest are natural ecosystems. A total of 551 taxa of macrofungi were recorded. Between 17% and 36% of the species in any one habitat were found only in that habitat. The most frequently encountered and ubiquitous species was Craterellus tubaeformis (Fr.) Quel., found in all years, habitats, and sites. Of the 551 taxa, only 28 were found every year, and 308 were found in only 1 year. Rare species that were recorded include Cordyceps ravenelii Berkeley & Curtis, Hygrophorus inocybiformis Smith, and Tricholoma apium Schaeffer in the dunes and Stereopsis humphreyi (Burt) Redhead in the spruce fringe. Similarities between habitats based on taxa in common showed that bog and estuarine habitats had only 9%–17% in common with each other and the other habitats, whereas dune, spruce fringe, and the two forest types shared 21%–31% of their species. Old-growth rainforest yielded approximately 4 times as many species as bog and estuarine habitats, and approximately 1.5 times as many as the other three habitats.Key words: Clayoquot Sound, Vancouver Island, macrofungi, habitats, biodiversity.


Biotropica ◽  
2009 ◽  
Vol 41 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Steven E. Sesnie ◽  
Bryan Finegan ◽  
Paul E. Gessler ◽  
Zayra Ramos

2019 ◽  
Vol 38 (1) ◽  
pp. 174-192 ◽  
Author(s):  
Henry J Boer

Across developing countries substantial effort and resources have been dedicated to setting up systems for the measurement, recording and verification of greenhouse gas emissions in the forestry and land-use sectors – a key initiative of the global climate programme Reducing Emissions from Deforestation and Forest Degradation. This paper approaches these systems through the lens of conservation biopolitics, identifying the calculative processes and spatial logics that attempt to regulate the life and death of the forest. It uses an example of the Indonesian National Carbon Accounting System to explore how a biopolitical apparatus of constant data accumulation and presentation integrates an infinitely complex set of ecological processes across highly differentiated spatial landscapes, and organises these into governable carbon domains. The Indonesian National Carbon Accounting System provides a visual and numeric representation of the various policy and socio-economic processes that drive and limit carbon emissions, and identifies where this occurs in the landscape. By understanding these forest–carbon–human dynamics, programmes can be designed that change how populations access, use and potentially restore the life of the forest. For state and non-state interests alike, the System was viewed as a critical tool for both developing and evaluating the performance of multiple forest carbon initiatives. It also offers a surveillance apparatus to regulate the carbon market and to discipline the actions of various agents that utilise forests and land. Critically, the biopolitical utility of these systems have been undermined by waning commitment within Indonesia to overhaul forest governance towards carbon outcomes.


Sign in / Sign up

Export Citation Format

Share Document