scholarly journals Perspectives on Entangled Nuclear Particle Pairs Generation and Manipulation in Quantum Communication and Cryptography Systems

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Octavian Dănilă ◽  
Paul E. Sterian ◽  
Andreea Rodica Sterian

Entanglement between two quantum elements is a phenomenon which presents a broad application spectrum, being used largely in quantum cryptography schemes and in physical characterisation of the universe. Commonly known entangled states have been obtained with photons and electrons, but other quantum elements such as quarks, leptons, and neutrinos have shown their informational potential. In this paper, we present the perspective of exploiting the phenomenon of entanglement that appears in nuclear particle interactions as a resource for quantum key distribution protocols.

2016 ◽  
Vol 14 (02) ◽  
pp. 1630002
Author(s):  
Monika Jacak ◽  
Janusz Jacak ◽  
Piotr Jóźwiak ◽  
Ireneusz Jóźwiak

The overview of the current status of quantum cryptography is given in regard to quantum key distribution (QKD) protocols, implemented both on nonentangled and entangled flying qubits. Two commercial R&D platforms of QKD systems are described (the Clavis II platform by idQuantique implemented on nonentangled photons and the EPR S405 Quelle platform by AIT based on entangled photons) and tested for feasibility of their usage in commercial TELECOM fiber metropolitan networks. The comparison of systems efficiency, stability and resistivity against noise and hacker attacks is given with some suggestion toward system improvement, along with assessment of two models of QKD.


2005 ◽  
Vol 5 (3) ◽  
pp. 181-186
Author(s):  
Th. Beth ◽  
J. Muller-Quade ◽  
R. Steinwandt

Recently, a quantum key exchange protocol has been described\cite{PFLM04}, which served as basis for securing an actual bank transaction by means of quantum cryptography \cite{ZVS04}. The authentication scheme used to this aim has been proposed by Peev et al. \cite{PML04}. Here we show, that this authentication is insecure in the sense that an attacker can provoke a situation where initiator and responder of a key exchange end up with different keys. Moreover, it may happen that an attacker can decrypt a part of the plaintext protected with the derived encryption key.


2021 ◽  
pp. 2150156
Author(s):  
Tianqi Dou ◽  
Hongwei Liu ◽  
Jipeng Wang ◽  
Zhenhua Li ◽  
Wenxiu Qu ◽  
...  

Quantum communication plays an important role in quantum information science due to its unconditional security. In practical implementations, the users of each communication vary with the transmitted information, and hence not all users are required to participate in each communication round. Therefore, improving the flexibility and efficiency of the actual communication process is highly demanded. Here, we propose a theoretical quantum communication scheme that realizes secret key distribution for both the two-party quantum key distribution (QKD) and multi-party quantum secret sharing (QSS) modes. The sender, Alice, can freely select one or more users to share keys among all users, and nonactive users will not participate in the process of secret key sharing. Numerical simulations show the superiority of the proposed scheme in transmission distance and secure key rate. Consequently, the proposed scheme is valuable for secure quantum communication network scenarios.


Author(s):  
Stephen Barnett

The practical implementation of quantum information technologies requires, for the most part, highly advanced and currently experimental procedures. One exception is quantum cryptography, or quantum key distribution, which has been successfully demonstrated in many laboratories and has reached an advanced level of development. It will probably become the first commercial application of quantum information. In quantum key distribution, Alice and Bob exploit a quantum channel to create a secret shared key comprising a random string of binary digits. This key can then be used to protect a subsequent communication between them. The principal idea is that the secrecy of the key distribution is ensured by the laws of quantum physics. Proving security for practical communication systems is a challenging problem and requires techniques that are beyond the scope of this book. At a fundamental level, however, the ideas are simple and may readily be understood with the knowledge we have already acquired. Quantum cryptography is the latest idea in the long history of secure (and not so secure) communications and, if it is to develop, it will have to compete with existing technologies. For this reason we begin with a brief survey of the history and current state of the art in secure communications before turning to the possibilities offered by quantum communications. The history of cryptography is a long and fascinating one. As a consequence of the success or, more spectacularly, the failure of ciphers, wars have been fought, battles decided, kingdoms won, and heads lost. In the information age, ciphers and cryptosystems have become part of everyday life; we use them to protect our computers, to shop over the Internet, and to access our money via an ATM (automated teller machine). One of the oldest and simplest of all ciphers is the transposition or Caesarean cipher (attributed to Julius Caesar), in which the letters are shifted by a known (and secret) number of places in the alphabet. If the shift is 1, for example, then A is enciphered as B, B→C, · · ·, Y→Z, Z→A. A shift of five places leads us to make the replacements A→F, B→G, · · ·, Y→D, Z→E.


2019 ◽  
Vol 9 (10) ◽  
pp. 2081 ◽  
Author(s):  
Hua Wang ◽  
Yongli Zhao ◽  
Avishek Nag

As an important support for quantum communication, quantum key distribution (QKD) networks have achieved a relatively mature level of development, and they face higher requirements for multi-user end-to-end networking capabilities. Thus, QKD networks need an effective management plane to control and coordinate with the QKD resources. As a promising technology, software defined networking (SDN) can separate the control and management of QKD networks from the actual forwarding of the quantum keys. This paper systematically introduces QKD networks enabled by SDN, by elaborating on its overall architecture, related interfaces, and protocols. Then, three-use cases are provided as important paradigms with their corresponding schemes and simulation performances.


Author(s):  
Jonathan C Denton ◽  
Douglas D Hodson ◽  
Richard G Cobb ◽  
Logan O Mailloux ◽  
Michael R Grimaila ◽  
...  

This work presents a model to estimate the performance of space-based, optical-based, quantum communication protocols. This model consists of components to account for optical channel propagation effects based on orbit selection and atmospheric conditions. The model presented is general purpose and can be leveraged to evaluate the performance of a variety of quantum communication protocols, of which, Quantum Key Distribution (QKD) systems served as our motivating use case of particular interest. To verify correctness, the model is used to produce estimates for QKD system scenarios and compared to published results. The performance of QKD systems is of interest as distance limitations for terrestrial-based systems have hindered their practical use, and satellite-based designs that can generate a shared key between two distant geographic locations have been proposed. For this application domain, a review of space-based designs that illuminate the need for a free space downlink channel model is presented followed by its development to estimate the performance of quantum exchanges between a satellite and ground site.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 434
Author(s):  
F. Hadi Madjid ◽  
John M. Myers

Entangled states of light exhibit measurable correlations between light detections at separated locations. These correlations are exploited in entangled-state quantum key distribution. To do so involves setting up and maintaining a rhythm of communication among clocks at separated locations. Here, we try to disentangle our thinking about clocks as used in actual experiments from theories of time, such as special relativity or general relativity, which already differ between each other. Special relativity intertwines the concept of time with a particular definition of the synchronization of clocks, which precludes synchronizing every clock to every other clock. General relativity imposes additional barriers to synchronization, barriers that invite seeking an alternative depending on any global concept of time. To this end, we focus on how clocks are actually used in some experimental situations. We show how working with clocks without worrying about time makes it possible to generalize some designs for quantum key distribution and also clarifies the need for alternatives to the special-relativistic definition of synchronization.


2017 ◽  
Vol 381 (35) ◽  
pp. 2922-2926 ◽  
Author(s):  
Hong Lai ◽  
Ming-Xing Luo ◽  
Cheng Zhan ◽  
Josef Pieprzyk ◽  
Mehmet A. Orgun

Sign in / Sign up

Export Citation Format

Share Document