scholarly journals An Odontoid Fracture Causing Apnea, Cardiac Instability, and Quadriplegia

2012 ◽  
Vol 2012 ◽  
pp. 1-2
Author(s):  
Christian A. Bowers ◽  
Gregory F. Jost ◽  
Andrew T. Dailey

Odontoid fractures are typically associated with low rates of acute neurologic deficit and morbidity/mortality in nonelderly patients. In the patient in this case, traumatic injury triggered by a syncopal event led to a combined C1-C2 fracture and a fatal spinal cord injury with apnea, quadriplegia, and cardiovascular instability. We briefly review the anatomical basis for the pathophysiology of cardiac dysfunction following high-cervical spine injury and present an example of a worst-case scenario.

2017 ◽  
Vol 2017 ◽  
pp. 1-3
Author(s):  
Amit Frenkel ◽  
Yair Binyamin ◽  
Evgeni Brotfain ◽  
Leonid Koyfman ◽  
Aviel Roy-Shapira ◽  
...  

We present a case of a 51-year-old man who was injured in a bicycle accident. His main injury was an unstable fracture of the cervical and thoracic vertebral column. Several hours after his arrival to the hospital the patient underwent open reduction and internal fixation (ORIF) of the cervical and thoracic spine. The patient was hospitalized in our critical care unit for 99 days. During this time patient had several episodes of severe bradycardia and asystole; some were short with spontaneous return to sinus and some required pharmacological treatment and even Cardiopulmonary Resuscitation (CPR). Initially, these episodes were attributed to the high cervical spine injury, but, later on, CT scan suggested that a fixation screw abutted on the esophagus and activated the vagus nerve by direct pressure. After repositioning of the cervical fixation, the bradycardia and asystole episodes were no longer observed and the patient was released to a rehabilitation ward. This case is presented in order to alert practitioners to the possibility that, after operative fixation of cervical spine injuries, recurrent episodes of bradyarrhythmia can be caused by incorrect placement of the fixation screws and might be confused with the natural history of the high cervical cord injury.


Author(s):  
Ugo Carraro ◽  
Paolo Gargiulo ◽  
Jorgelina Ramos ◽  
Romain Aubonnet ◽  
Helmut Kern

We demonstrated the long-term clinical value of co-activating thigh muscles through hbFES strategy using high currents and large surface electrodes. This Vienna Strategy is able to reverse, at clinically relevant levels, the adverse effects of Spinal Cord Injury (SCI), even in the worst-case scenario of complete lesion of lower motor neurons, as it may occur in complete conus and cauda equina syndrome. Continued regularly, hbFES for denervated, degenerating muscles helps to maintain healthier leg muscles and skin, reducing the risks of life-threatening SCI complications. By products of these studies are new approaches for counteracting aging muscle atrophy, new color clinical imaging of muscle tissue and Machine Learning Predictive Systems for skeletal muscle diagnostics and managements.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 529 ◽  
Author(s):  
Helmut Kern ◽  
Ugo Carraro

Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.


2020 ◽  
Vol 97 (3) ◽  
pp. 130-136 ◽  
Author(s):  
U. Carraro ◽  
H. Kern ◽  
G. Albertin G. ◽  
S. Masiero ◽  
A. Pond ◽  
...  

Spinal cord injury produces muscle wasting, which is especially severe after the complete and permanent damage of lower motor neurons that occurs in complete Cauda Equina Syndrome. Even in this worst-case scenario, we have shown that permanently denervated Quadriceps muscle can be rescued by surface Functional Electrical Stimulation and a purpose designed home-based rehabilitation regime. Here, our aim is to show that the effects are extended to both antagonist muscles and the skin of the thighs. Before and after 2 years of electrical stimulation, mass and structure of Quadriceps and Hamstrings muscles were quantitated by force measurements. Muscle gross cross section were evaluated using color computed tomography, muscle and skin biopsies by quantitative histology and immunohistochemistry. The treatment produced: a) an increase in cross-sectional area of stimulated muscles; b) an increase in muscle fiber mean diameter; c) improvements in ultrastructural organization; and d) increased force output during electrical stimulation. The recovery of Quadriceps muscle force was sufficient to allow 25% of the compliant subjects to perform stand-up and step-in place trainings. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that, with or without our advice, trials may start soon in Europe and Russia to provide persons-in-need the help they deserve.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
D. V. Vaniukova ◽  
◽  
P. A. Kutsenkov ◽  

The research expedition of the Institute of Oriental studies of the Russian Academy of Sciences has been working in Mali since 2015. Since 2017, it has been attended by employees of the State Museum of the East. The task of the expedition is to study the transformation of traditional Dogon culture in the context of globalization, as well as to collect ethnographic information (life, customs, features of the traditional social and political structure); to collect oral historical legends; to study the history, existence, and transformation of artistic tradition in the villages of the Dogon Country in modern conditions; collecting items of Ethnography and art to add to the collection of the African collection of the. Peter the Great Museum (Kunstkamera, Saint Petersburg) and the State Museum of Oriental Arts (Moscow). The plan of the expedition in January 2020 included additional items, namely, the study of the functioning of the antique market in Mali (the “path” of things from villages to cities, which is important for attributing works of traditional art). The geography of our research was significantly expanded to the regions of Sikasso and Koulikoro in Mali, as well as to the city of Bobo-Dioulasso and its surroundings in Burkina Faso, which is related to the study of migrations to the Bandiagara Highlands. In addition, the plan of the expedition included organization of a photo exhibition in the Museum of the village of Endé and some educational projects. Unfortunately, after the mass murder in March 2019 in the village of Ogossogou-Pel, where more than one hundred and seventy people were killed, events in the Dogon Country began to develop in the worst-case scenario: The incessant provocations after that revived the old feud between the Pel (Fulbe) pastoralists and the Dogon farmers. So far, this hostility and mutual distrust has not yet developed into a full-scale ethnic conflict, but, unfortunately, such a development now seems quite likely.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 491
Author(s):  
Alina E. Kozhukhova ◽  
Stephanus P. du Preez ◽  
Aleksander A. Malakhov ◽  
Dmitri G. Bessarabov

In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. The Pt/AAO catalyst’s morphological characteristics were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average Pt particle size was determined to be 3.0 ± 0.6 nm. This Pt/AAO catalyst was tested for the combustion of lean hydrogen (0.5–4 vol% H2 in the air) in a recombiner section testing station. The thermal distribution throughout the catalytic surface was investigated at 3 vol% hydrogen (H2) using an infrared camera. The Al/AAO system had a high thermal conductivity, which prevents the formation of hotspots (areas where localized surface temperature is higher than an average temperature across the entire catalyst surface). In turn, the Pt stability was enhanced during catalytic hydrogen combustion (CHC). A temperature gradient over 70 mm of the Pt/AAO catalyst was 23 °C and 42 °C for catalysts with uniform and nonuniform (worst-case scenario) Pt distributions. The commercial computational fluid dynamics (CFD) code STAR-CCM+ was used to compare the experimentally observed and numerically simulated thermal distribution of the Pt/AAO catalyst. The effect of the initial H2 volume fraction on the combustion temperature and conversion of H2 was investigated. The activation energy for CHC on the Pt/AAO catalyst was 19.2 kJ/mol. Prolonged CHC was performed to assess the durability (reactive metal stability and catalytic activity) of the Pt/AAO catalyst. A stable combustion temperature of 162.8 ± 8.0 °C was maintained over 530 h of CHC. To confirm that Pt aggregation was avoided, the Pt particle size and distribution were determined by TEM before and after prolonged CHC.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1625
Author(s):  
Theresa C. Sutherland ◽  
Arthur Sefiani ◽  
Darijana Horvat ◽  
Taylor E. Huntington ◽  
Yuanjiu Lei ◽  
...  

The age of incidence of spinal cord injury (SCI) and the average age of people living with SCI is continuously increasing. However, SCI is extensively modeled in young adult animals, hampering translation of research to clinical applications. While there has been significant progress in manipulating axon growth after injury, the impact of aging is still unknown. Mitochondria are essential to successful neurite and axon growth, while aging is associated with a decline in mitochondrial functions. Using isolation and culture of adult cortical neurons, we analyzed mitochondrial changes in 2-, 6-, 12- and 18-month-old mice. We observed reduced neurite growth in older neurons. Older neurons also showed dysfunctional respiration, reduced membrane potential, and altered mitochondrial membrane transport proteins; however, mitochondrial DNA (mtDNA) abundance and cellular ATP were increased. Taken together, these data suggest that dysfunctional mitochondria in older neurons may be associated with the age-dependent reduction in neurite growth. Both normal aging and traumatic injury are associated with mitochondrial dysfunction, posing a challenge for an aging SCI population as the two elements can combine to worsen injury outcomes. The results of this study highlight this as an area of great interest in CNS trauma.


Author(s):  
Fedorova Jana ◽  
Kellerova Erika ◽  
Bimbova Katarina ◽  
Pavel Jaroslav

AbstractSpontaneous recovery of lost motor functions is relative fast in rodent models after inducing a very mild/moderate spinal cord injury (SCI), and this may complicate a reliable evaluation of the effectiveness of potential therapy. Therefore, a severe graded (30 g, 40 g and 50 g) weight-compression SCI at the Th9 spinal segment, involving an acute mechanical impact followed by 15 min of persistent compression, was studied in adult female Wistar rats. Functional parameters, such as spontaneous recovery of motor hind limb and bladder emptying function, and the presence of hematuria were evaluated within 28 days of the post-traumatic period. The disruption of the blood-spinal cord barrier, measured by extravasated Evans Blue dye, was examined 24 h after the SCI, when maximum permeability occurs. At the end of the survival period, the degradation of gray and white matter associated with the formation of cystic cavities, and quantitative changes of glial structural proteins, such as GFAP, and integral components of axonal architecture, such as neurofilaments and myelin basic protein, were evaluated in the lesioned area of the spinal cord. Based on these functional and histological parameters, and taking the animal’s welfare into account, the 40 g weight can be considered as an upper limit for severe traumatic injury in this compression model.


Sign in / Sign up

Export Citation Format

Share Document