scholarly journals Comparative Biosorption Studies of Hexavalent Chromium Ion onto Raw and Modified Palm Branches

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mona A. Shouman ◽  
Nady A. Fathy ◽  
Soheir A. Khedr ◽  
Amina A. Attia

The waste of palm branches (PB) was tested for its ability to remove chromium (VI) from aqueous solution by batch and column experiments. Palm branches chemically modified with an oxidizing agent (sulphuric acid) then coated with chitosan and surfactant (hexadecyl trimethyl ammonium bromide surfactant, HDTMA), respectively, were carried out to improve the removal performance of PB. The results of their Cr (VI) removal performances are pH dependent. The adsorption data could be well interpreted by the Langmuir, Freundlich, and Flory-Huggins isotherm models. The maximum adsorption capacity obtained from the Langmuir model for the chitosan coated oxidized palm branches is 55 mg/mg. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved. The biosorbents were successfully regenerated using 1 M HCL solution.

2021 ◽  
Author(s):  
Maoling Wu ◽  
Ling Ding ◽  
Jun Liao ◽  
Yong Zhang ◽  
Wenkun Zhu

Abstract In this work, the efficient extraction of uranium in solution using Al2O3-SiO2-T was reported. Kinetics and isotherm models indicated that the removal process of uranium onAl2O3-SiO2-T accorded with pseudo-second-order kinetic model and Langmuir isotherm model, which showed that the adsorption process was a uniform mono-layer chemical behavior. The maximum adsorption capacity of Al2O3-SiO2-T reached 738.7 mg g-1, which was higher than AlNaO6Si2 (349.8 mg g-1) and Al2O3-SiO2-NT (453.1 mg g-1), indicating that the addition of template could effectively improve the adsorption performance of Al2O3-SiO2 to uranium. Even after five cycles of adsorption-desorption, the removal percentage of uranium on Al2O3-SiO2-T remained 96%. Besides, the extraction efficiency of uranium on Al2O3-SiO2-T was 72.5% in simulated seawater, which suggested that the Al2O3-SiO2-T was expected to be used for uranium extraction from seawater. Further, the interaction mechanism between Al2O3-SiO2-T and uranium species was studied. The results showed that the electrostatic interaction and complexation played key roles in the adsorption process of Al2O3-SiO2-T to uranium.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


2017 ◽  
Vol 55 (1) ◽  
pp. 54
Author(s):  
Le Cao The ◽  
Vu Minh Tan ◽  
Phan Thi Binh

Composite based on eucalyptus leaf and polyaniline (EL-PANi) was prepared by chemical polymerization method. It showed that the function groups belonging to polyaniline and eucalyptus leaf were found through IR analysis and the nanostructure of composite was explained by SEM images. The adsorption of  Pb2+ was carried out onto composite in aqueous solution via varying pH, contact time, and its initial concentration. The experimental adsorption data fitted well into Freundlich adsorption isotherm model (r2 = 0.9873). The adsorption process followed pseudo-second order kinetic with r2 = 0.9995. The maximum adsorption capacity of Pb2+ onto that composite was 172.4138 mg/g  by Langmuir equation and KF was 58.7527 mg/g by Freundlich one.


2013 ◽  
Vol 28 (1-2) ◽  
pp. 113-122
Author(s):  
Kedar Nath Ghimire ◽  
Deepak Wagle ◽  
Suman Lal Shrestha

An effective chemically modified adsorbent based on sugarcane waste has been prepared by treating with concentrated sulphuric acid in 2:1weight/volume ratio. Thus prepared adsorbent has been found to be effective in the adsorption of chromium from aqueous medium. The efficacy of the adsorbent in the removal of chromium was evaluated by batch adsorption method. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was found to be 195 mg/g at their optimal pH 1 at which unmodified bagasse has only 58 mg/g. The characterization of adsorbent was done by determining surface area and Boehm’s titration method. Freundlich isotherm and pseudo-second order kinetic model gave better explanation of the adsorption process.


2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


2014 ◽  
Vol 805 ◽  
pp. 581-584 ◽  
Author(s):  
Débora Martins Aragão ◽  
Maria de Lara P.M. Arguelho ◽  
Carolina Mangieri Oliveira Prado ◽  
José do Patrocinio Hora Alves

Natural kaolinite clay collected in the State of Sergipe (northeast Brazil) was used as an adsorbent for the ions Pb2+, Cd2+, and Cu2+present in aqueous solution. Adsorption equilibrium was reached rapidly, enabling use of a contact time of 30 minutes, and maximum adsorption was achieved at pH 7.0. For all three metal ions, the adsorption data could be fitted using the Langmuir isotherm and the adsorption process obeyed a pseudo-second order kinetic model.


2015 ◽  
Vol 20 (2) ◽  
pp. 145-152
Author(s):  
Shukraraj Regmi ◽  
Kedar Nath Ghimire ◽  
Megh Raj Pokhrel ◽  
Deba Bahadur Khadka

Chemically modified adsorbent based on Phragmities stem has been investigated by treating with concentrated sulfuric acid at 2:1 weight/volume ratio. The maximum loading capacity for Al(III) and Fe(II) onto phosphorylated charred Phragmities waste PCPW adsorbent was found to be 148 mg/g and 200 mg/g, while for Cr(VI) 200 mg/g, respectively, at their optimal pH. Similarly, it was 166.66 mg/g and 90.90mg/g for Al(III) and Fe(II) onto the charred Phragmities waste CPW, respectively. The adsorption process followed the Freundlich isotherm and pseudo-second order kinetic models. The desorption of the loaded metal ions recovery was found to be to the extent of 82%, 91% and 100% for Al(III), Fe(II) and Cr(VI), respectively.Journal of Institute of Science and Technology, 2015, 20(2): 145-152


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Olugbenga Solomon Bello ◽  
Kayode Adesina Adegoke ◽  
Samuel Oluwaseun Fagbenro ◽  
Olasunkanmi Seun Lameed

Abstract This study investigates the efficacy of acid activated coconut husk (CHA) for the removal of rhodamine-B (Rh-B) dye from aqueous solutions. The CHA prepared was characterized using various techniques: SEM, FTIR EDX, Boehm titration and pHpzc, respectively. The effects of different operational parameters including initial concentration, contact time and solution temperatures were examined. Kinetic data for Rh-B dye adsorption onto CHA fitted best to pseudo-second-order kinetic model considering the correlation regression (R2) and the sum of squares of error values. Adsorption data were fitted to Langmuir, Freundlich, Dubinin–Radushkevich and Temkin isotherm models. Langmuir isotherm was the most fitted among all the models used with maximum monolayer sorption capacity of 1666.67 mg g−1 and the highest regression value of 0.99 indicating that CHA has greater affinity for Rh-B dye adsorption due to increased pore development via acid activation. Thermodynamic studies revealed an endothermic adsorption process with the ΔH0 value of 62.77 kJ mol−1. Spontaneity was ascertained based on the negative values of ΔGo (ranging from − 26.38 kJ mol−1 to − 20.93 kJ mol−1). The positive value of ΔS0 (0.276 kJ mol−1 K−1) suggests increased randomness that exists between CHA and Rh-B dye. Cost analysis results revealed that CHA is six times cheaper than commercial activated carbon (CAC), providing a savings of 217 US$ kg−1. CHA adsorbent was found to be suitable for Rh-B dye removal from aqueous solution.


1970 ◽  
Vol 23 ◽  
pp. 102-105 ◽  
Author(s):  
Puspa Lal Homagai ◽  
Hari Paudyal

Saponified apple waste gel was prepared in wet condition with calcium hydroxide at highly alkaline medium. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was investigated for Fe(III), Cd(II), Zn(II) and Pb(II) at their optimal pH of 3, 6, 4.5 and 3.5 respectively. Langmuir isotherm and pseudo second-order kinetic model gave better explanation of the adsorption process. For binary mixture of Zn(II) and Cd(II), the separation factor and effect on adsorption capacity for both the metals were investigated.Keywords: adsorption, saponified apple waste, bioadsorption.DOI: 10.3126/jncs.v23i0.2103Journal of Nepal Chemical Society, Vol. 23, 2008/2009 Page: 102-105


2021 ◽  
Vol 11 (1) ◽  
pp. 60-66
Author(s):  
Quy Bui Minh ◽  
Oanh Do Thi ◽  
Vinh Nguyen Dinh ◽  
Linh Nguyen Thi Ngoc ◽  
Hoa Nguyen Thi Hong ◽  
...  

The chitosan/mangetite composite in the mass ratio chitosan:mangetite of 9:1 (CM91) was synthesised by co-precipitation method. The characteristics of the chitosan/mangetite composite was estimated by X-ray diffraction method (XRD) and scanning electron microscopy techniques (SEM). The methylene blue adsorption ability onto CM91 composite was well at value pH 9, equilibrium contact time of 20 minutes. The experimental adsorption data fitted into pseudo–Langmuir adsorption isotherm models. The adsorption followed pseudo-second order kinetic model very well. The maximum adsorption capacity of that composite which caculated by Langmuir equation was 94,18 mg/g.


Sign in / Sign up

Export Citation Format

Share Document