scholarly journals Adsorption Behaviour of Chromium(VI) onto Surface Modified Sugarcane Waste

2013 ◽  
Vol 28 (1-2) ◽  
pp. 113-122
Author(s):  
Kedar Nath Ghimire ◽  
Deepak Wagle ◽  
Suman Lal Shrestha

An effective chemically modified adsorbent based on sugarcane waste has been prepared by treating with concentrated sulphuric acid in 2:1weight/volume ratio. Thus prepared adsorbent has been found to be effective in the adsorption of chromium from aqueous medium. The efficacy of the adsorbent in the removal of chromium was evaluated by batch adsorption method. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was found to be 195 mg/g at their optimal pH 1 at which unmodified bagasse has only 58 mg/g. The characterization of adsorbent was done by determining surface area and Boehm’s titration method. Freundlich isotherm and pseudo-second order kinetic model gave better explanation of the adsorption process.

2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


Author(s):  
Ernesto Jr. S. Cajucom ◽  
◽  
Lolibeth V. Figueroa ◽  

This study was carried out to investigate the efficiency of raw pili shell (RPS) and the surface modified pili shell using EDTA (EMPS) and oxalic acid (OMPS). A comparative study on the adsorption capacity of the adsorbents was performed against lead (Pb2+) from aqueous solution. The adsorbents were characterized by FTIR, which showed higher peak of adsorption bands of carboxylic groups on the acid modified pili shells. Scanning electron microscope orSEM was also used to describe the surface morphology of the adsorbents. The linear form of Langmuir and Freundlich models were applied to represent adsorption data. The calculated equilibrium data of Pb (II) best fitted to Langmuir compare to Freundlich isotherm model with maximum adsorption capacity (qmax) of 27.03 mg/g and 45.45 mg/g using EMPS and OMPS, respectively. Kinetic sorption models were used to determine the adsorption mechanism and the kinetic data of all the adsorbents correlated (R2=1) wellwith the pseudo second order kinetic model. Among the three adsorbents, OMPS shown higher percent removal of lead compared to RPS and EMPS. The large adsorption capacity rate indicated that chemically modified pili shell in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.


2018 ◽  
Vol 5 (8) ◽  
pp. 180942 ◽  
Author(s):  
J. M. Anne ◽  
Y. H. Boon ◽  
B. Saad ◽  
M. Miskam ◽  
M. M. Yusoff ◽  
...  

In this work, we reported the synthesis, characterization and adsorption study of two β-cyclodextrin (βCD) cross-linked polymers using aromatic linker 2,4-toluene diisocyanate (2,4-TDI) and aliphatic linker 1,6-hexamethylene diisocyanate (1,6-HDI) to form insoluble βCD-TDI and βCD-HDI. The adsorption of 2,4-dinitrophenol (DNP) on both polymers as an adsorbent was studied in batch adsorption experiments. Both polymers were well characterized using various tools that include Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller analysis and scanning electron microscopy, and the results obtained were compared with the native βCD. The adsorption isotherm of 2,4-DNP onto polymers was studied. It showed that the Freundlich isotherm is a better fit for βCD-TDI, while the Langmuir isotherm is a better fit for βCD-HMDI. The pseudo-second-order kinetic model represented the adsorption process for both of the polymers. The thermodynamic study showed that βCD-TDI polymer was more favourable towards 2,4-DNP when compared with βCD-HDI polymer. Under optimized conditions, both βCD polymers were successfully applied on various environmental water samples for the removal of 2,4-DNP. βCD-TDI polymer showed enhanced sorption capacity and higher removal efficiency (greater than 80%) than βCD-HDI (greater than 70%) towards 2,4-DNP. The mechanism involved was discussed, and the effects of cross-linkers on βCD open up new perspectives for the removal of toxic contaminants from a body of water.


2018 ◽  
Vol 20 (2) ◽  
pp. 381-388 ◽  

The removal of Lead (II) from aqueous solutions using Fagopyrum esculentum Moench (Buckwheat) and Bambusa vulgaris (common bamboo) as adsorbents was investigated. The effects of various experimental parameters such as initial concentration, contact time and pH have been studied using batch adsorption technique. All the Adsorption isotherm models fitted well with the adsorption data. However, Freundlich isotherm displayed a better fitting model than the other two isotherm models due to high correlation coefficient (R2). This indicates the applicability of multilayer coverage of the Pb (II) on the surface of adsorbent. The adsorption kinetics was studied using four simplified models and it was found to follow the pseudo-second-order kinetic model which confirmed the applicability of the model. The adsorption mechanism was found to be chemisorption and the rate-limiting step was mainly surface adsorption.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2081 ◽  
Author(s):  
Sun-Wook Jeong ◽  
Hyo Kim ◽  
Jung Yang ◽  
Yong Choi

As concerns are increasing about drinking water contamination with heavy metals, we investigated the possible use of a pellicle (floating biofilm)-like biofilm-producing microorganism as a biosorbent for the treatment of Pb(II) in aqueous solutions. The bacterial pellicle-producing Methylobacterium hispanicum EM2 strain (EM2) was newly isolated from mine tailing soil, and we investigated its use as a biosorbent for treating a Pb(II)-contaminated aqueous solution. The EM2 strain was strongly resistant to Pb(II) up to a concentration of 800 mg/L, and achieved remarkable adsorption performance (adsorption rate and maximum adsorption capacity of 96% ± 3.2% and 79.84 mg/g, respectively) under optimal conditions (pH, biomass content, contact time, and initial Pb(II) concentration of 7.1 g/L, 60 min, and 10 mg/L, respectively). The adsorption of Pb(II) was characterized by scanning electron microscopy-energy dispersive x-ray spectroscopy and Fourier-transform infrared analysis. The equilibrium data matched the Freundlich isotherm model well, indicating the occurrence of multilayer adsorption of Pb(II) onto the heterogeneous surface of the EM2 strain, which was also consistent with the pseudo-second-order kinetic model (R2 = 0.98). The high Pb(II) removal efficiency was also confirmed by conducting an adsorption experiment using Pb(II)-contaminated industrial wastewater.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


2015 ◽  
Vol 20 (2) ◽  
pp. 145-152
Author(s):  
Shukraraj Regmi ◽  
Kedar Nath Ghimire ◽  
Megh Raj Pokhrel ◽  
Deba Bahadur Khadka

Chemically modified adsorbent based on Phragmities stem has been investigated by treating with concentrated sulfuric acid at 2:1 weight/volume ratio. The maximum loading capacity for Al(III) and Fe(II) onto phosphorylated charred Phragmities waste PCPW adsorbent was found to be 148 mg/g and 200 mg/g, while for Cr(VI) 200 mg/g, respectively, at their optimal pH. Similarly, it was 166.66 mg/g and 90.90mg/g for Al(III) and Fe(II) onto the charred Phragmities waste CPW, respectively. The adsorption process followed the Freundlich isotherm and pseudo-second order kinetic models. The desorption of the loaded metal ions recovery was found to be to the extent of 82%, 91% and 100% for Al(III), Fe(II) and Cr(VI), respectively.Journal of Institute of Science and Technology, 2015, 20(2): 145-152


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mona A. Shouman ◽  
Nady A. Fathy ◽  
Soheir A. Khedr ◽  
Amina A. Attia

The waste of palm branches (PB) was tested for its ability to remove chromium (VI) from aqueous solution by batch and column experiments. Palm branches chemically modified with an oxidizing agent (sulphuric acid) then coated with chitosan and surfactant (hexadecyl trimethyl ammonium bromide surfactant, HDTMA), respectively, were carried out to improve the removal performance of PB. The results of their Cr (VI) removal performances are pH dependent. The adsorption data could be well interpreted by the Langmuir, Freundlich, and Flory-Huggins isotherm models. The maximum adsorption capacity obtained from the Langmuir model for the chitosan coated oxidized palm branches is 55 mg/mg. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved. The biosorbents were successfully regenerated using 1 M HCL solution.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Kumarathilaka ◽  
Vimukthi Jayaweera ◽  
Hasintha Wijesekara ◽  
I. R. M. Kottegoda ◽  
S. R. D. Rosa ◽  
...  

Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI).


Sign in / Sign up

Export Citation Format

Share Document