scholarly journals Improvement of NO Gas Sensing Properties of Polyaniline/MWCNT Composite by Photocatalytic Effect of TiO2

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jumi Yun ◽  
Sonyeo Jeon ◽  
Hyung-Il Kim

The highly sensitive and rapid NO gas sensor was prepared with polyaniline/TiO2/carbon nanotube composites. Aniline was polymerized on the surface of carbon nanotube (p-type semiconductor) with embedding TiO2. The gas sensing property was measured by the changes of electrical resistance without or with UV irradiation to investigate the photodegradation of NO by TiO2. The photo-degraded products such as HNO2, NO2, and HNO3, which were adsorbed on the PANi-coated carbon nanotubes, resulted in the decreased electrical resistance in the p-type semiconductors of carbon nanotube and polyaniline. The advantages of TiO2photocatalyst in gas sensing were apparent in the improvement in both sensitivity and response rate.

2008 ◽  
Vol 18 (12) ◽  
pp. 655-659 ◽  
Author(s):  
Seong-Yong Park ◽  
Hoon-Chul Jung ◽  
Eun-Seong Ahn ◽  
Le Hung Nguyen ◽  
Youn-Jin Kang ◽  
...  

2011 ◽  
Vol 214 ◽  
pp. 655-661 ◽  
Author(s):  
Amin Firouzi ◽  
Shafreeza Sobri ◽  
Faizah Mohd Yasin ◽  
Fakhru'l Razi Ahmadun

This research was carried out to monitor and investigate the gas sensing effects on carbon nanotubes (CNTs) by a systematic study of the variations in the electrical resistance as sensor signal induced by adsorption of CO2 and CH4 gaseous molecules. The CNTs were synthesized by Floating Catalyst Chemical Vapor Deposition (FC-CVD) method on quartz substrate under benzene bubble at temperature of 700°C. Then, they were tested for gas sensing applications operating at room temperature. Upon exposure to gaseous molecules, the electrical resistance of CNTs dramatically increased for both CO2 and CH4 gases with short response time and high sensitivity. It was also observed that the CNTs device behaves as a p-type semiconductor when exposed to gaseous molecules. In addition, the recovery of the sensors and mechanism of gas sensing procedure are discussed.


2012 ◽  
Vol 171-172 ◽  
pp. 354-360 ◽  
Author(s):  
A. Sutka ◽  
G. Mezinskis ◽  
A. Lusis ◽  
M. Stingaciu

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1457
Author(s):  
Aamna Bibi ◽  
Yuola Rose M. Rubio ◽  
Karen S. Santiago ◽  
His-Wei Jia ◽  
Mahmoud M. M. Ahmed ◽  
...  

In this paper, carbon aerogel (CA)-polyaniline (PANI) composites were prepared and first applied in the study of H2S gas sensing. Here, 1 and 3 wt% of as-obtained CA powder were blended with PANI to produce composites, which are denoted by PANI-CA-1 and PANI-CA-3, respectively. For the H2S gas-sensing studies, the interdigitated electrode (IDE) was spin-coated by performing PANI and PANI-CA composite dispersion. The H2S gas-sensing properties were studied in terms of the sensor’s sensitivity, selectivity and repeatability. IDE coated with PANI-CA composites, as compared with pristine PANI, achieved higher sensor sensitivity, higher selectivity and good repeatability. Moreover, composites that contain higher loading of CA (e.g., 3 wt%) perform better than composites with lower loading of CA. At 1 ppm, PANI-CA-3 displayed increased sensitivity of 452% at relative humidity of 60% with a fast average response time of 1 s compared to PANI.


2018 ◽  
Vol 6 (23) ◽  
pp. 6138-6145 ◽  
Author(s):  
Mingpeng Chen ◽  
Yumin Zhang ◽  
Jin Zhang ◽  
Kejin Li ◽  
Tianping Lv ◽  
...  

For developing highly sensitive, selective and stable gas sensing materials for the detection of volatile organic compounds, we report porous micro/nano-level structured Ag-LaFeO3 nanoparticles which have been successfully synthesized using a lotus leaf as a bio-template via a sol–gel process.


2020 ◽  
Vol 44 (37) ◽  
pp. 16174-16184
Author(s):  
Haoyue Yang ◽  
Rui Zhou ◽  
Yongjiao Sun ◽  
Pengwei Li ◽  
Wendong Zhang ◽  
...  

Au nanoparticle (Au NP) modified α-Fe2O3 nanodisk structures are obtained using a facile hydrothermal method and annealing based surface treatment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 785 ◽  
Author(s):  
Wen-Dong Zhou ◽  
Davoud Dastan ◽  
Jing Li ◽  
Xi-Tao Yin ◽  
Qi Wang

Metal oxide semiconductor (MOS) gas sensors have the advantages of high sensitivity, short response-recovery time and long-term stability. However, the shortcoming of poor discriminability of homogeneous gases limits their applications in gas sensors. It is well-known that the MOS materials have similar gas sensing responses to homogeneous gases such as CO and H2, so it is difficult for these gas sensors to distinguish the two gases. In this paper, simple sol–gel method was employed to obtain the ZnO–xNiO composites. Gas sensing performance results illustrated that the gas sensing properties of composites with x > 0.425 showed a p-type response to both CO and H2, while the gas sensing properties of composites with x < 0.425 showed an n-type response to both CO and H2. However, it was interesting that ZnO–0.425NiO showed a p-type response to CO but an discriminable response (n-type) to H2, which indicated that modulating the p-type or n-type semiconductor concentration in p-n composites could be an effective method with which to improve the discriminability of this type of gas sensor regarding CO and H2. The phenomenon of the special gas sensing behavior of ZnO–0.425NiO was explained based on the experimental observations and a range of characterization techniques, including XRD, HRTEM and XPS, in detail.


Sign in / Sign up

Export Citation Format

Share Document