scholarly journals Safety Aspects of People Exposed to Ultra Wideband Radar Fields

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marta Cavagnaro ◽  
Stefano Pisa ◽  
Erika Pittella

The safety aspects of people exposed to the field emitted by ultra wideband (UWB) radar, operating both in the spatial environment and on ground, for breath activity monitoring are analyzed. The basic restrictions and reference levels reported in the ICNIRP safety guideline are considered, and the compliance of electromagnetic fields radiated by a UWB radar with these limits is evaluated. First, simplified analytical approaches are used; then, both a 3-dimensional multilayered body model and an anatomical model of the head have been used to better evaluate the electromagnetic absorption when a UWB antenna is placed in front of the head. The obtained results show that if the field emitted by the UWB radar is compliant with spatial and/or ground emission masks, then both reference levels and basic restrictions are largely satisfied.

Author(s):  
Dounia Daghouj ◽  
Marwa Abdellaoui ◽  
Mohammed Fattah ◽  
Said Mazer ◽  
Youness Balboul ◽  
...  

<span>The pulse ultra-wide band (UWB) radar consists of switching of energy of very short duration in an ultra-broadband emission chain, and the UWB signal emitted is an ultrashort pulse, of the order of nanoseconds, without a carrier. These systems can indicate the presence and distances of a distant object, call a target, and determine its size, shape, speed, and trajectory. In this paper, we present a UWB radar system allowing the detection of the presence of a target and its localization in a road environment based on the principle of correlation of the reflected signal with the reference and the determination of its correlation peak.</span>


Author(s):  
Abdulhameed Habeeb Alghanimi

This chapter deals with the applications of ultra-wideband technology, especially for medical scope, and the most features and advantages that made it useful in this scope. Also, the chapter has been included with the most important medical applications of UWB technology. Ultra-wideband radar for angiography and UWB glucometer are the main applications which will be explained in this chapter. The exposure for safety aspects, the dielectric properties of human tissues, blood dielectric properties measurement using open-ended coaxial probe experiment to improve the blood image, and the ideal ultra-wideband pulses’ shape, width, and repetition time that are used for medical applications have been illustrated. Finally, the results (figures, tables, and experiment results), conclusions, and discussions have been mentioned.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3158
Author(s):  
Matti Hämäläinen ◽  
Lorenzo Mucchi ◽  
Stefano Caputo ◽  
Lorenzo Biotti ◽  
Lorenzo Ciani ◽  
...  

In this paper, we propose an unobtrusive method and architecture for monitoring a person’s presence and collecting his/her health-related parameters simultaneously in a home environment. The system is based on using a single ultra-wideband (UWB) impulse-radar as a sensing device. Using UWB radars, we aim to recognize a person and some preselected movements without camera-type monitoring. Via the experimental work, we have also demonstrated that, by using a UWB signal, it is possible to detect small chest movements remotely to recognize coughing, for example. In addition, based on statistical data analysis, a person’s posture in a room can be recognized in a steady situation. In addition, we implemented a machine learning technique (k-nearest neighbour) to automatically classify a static posture using UWB radar data. Skewness, kurtosis and received power are used in posture classification during the postprocessing. The classification accuracy achieved is more than 99%. In this paper, we also present reliability and fault tolerance analyses for three kinds of UWB radar network architectures to point out the weakest item in the installation. This information is highly important in the system’s implementation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhen Yang ◽  
Chi Ma ◽  
Qingjie Qi ◽  
Xin Li ◽  
Yan Li

When using pulsed ultra-wideband radar (UWB) noncontact detection technology to detect vital signs, weak vital signs echo signals are often covered by various noises, making human targets unable to identify and locate. To solve this problem, a new method for vital sign detection is proposed which is based on impulse ultra-wideband (UWB) radar. The range is determined based on the continuous wavelet transform (CWT) of the variance of the received signals. In addition, the TVF-EMD method is used to obtain the information of respiration and heartbeat frequency. Fifteen sets of experiments were carried out, and the echo radar signals of 5 volunteers at 3 different distances were collected. The analysis results of the measured data showed that the proposed algorithm can accurately and effectively extract the distance to the target human and its vital signs information, which shows vast prospects in research and application.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243939
Author(s):  
Won Hyuk Lee ◽  
Yonggu Lee ◽  
Jae Yoon Na ◽  
Seung Hyun Kim ◽  
Hyun Ju Lee ◽  
...  

Background Current cardiorespiratory monitoring equipment can cause injuries and infections in neonates with fragile skin. Impulse-radio ultra-wideband (IR-UWB) radar was recently demonstrated to be an effective contactless vital sign monitor in adults. The purpose of this study was to assess heart rates (HRs) and respiratory rates (RRs) in the neonatal intensive care unit (NICU) using IR-UWB radar and to evaluate its accuracy and reliability compared to conventional electrocardiography (ECG)/impedance pneumography (IPG). Methods The HR and RR were recorded in 34 neonates between 3 and 72 days of age during minimal movement (51 measurements in total) using IR-UWB radar (HRRd, RRRd) and ECG/IPG (HRECG, RRIPG) simultaneously. The radar signals were processed in real time using algorithms for neonates. Radar and ECG/IPG measurements were compared using concordance correlation coefficients (CCCs) and Bland-Altman plots. Results From the 34 neonates, 12,530 HR samples and 3,504 RR samples were measured. Both the HR and RR measured using the two methods were highly concordant when the neonates had minimal movements (CCC = 0.95 between the RRRd and RRIPG, CCC = 0.97 between the HRRd and HRECG). In the Bland-Altman plot, the mean biases were 0.17 breaths/min (95% limit of agreement [LOA] -7.0–7.3) between the RRRd and RRIPG and -0.23 bpm (95% LOA -5.3–4.8) between the HRRd and HRECG. Moreover, the agreement for the HR and RR measurements between the two modalities was consistently high regardless of neonate weight. Conclusions A cardiorespiratory monitor using IR-UWB radar may provide accurate non-contact HR and RR estimates without wires and electrodes for neonates in the NICU.


Sign in / Sign up

Export Citation Format

Share Document