scholarly journals Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
H. Abdullah ◽  
S. Habibi

CuInSe2(CIS) thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD) for crystallinity and field-emission scanning electron microscopy (FESEM) for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2films with (1 1 1), (2 2 0)/(2 0 4), and (3 1 2)/(1 1 6) planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

1999 ◽  
Vol 602 ◽  
Author(s):  
H.R. Khan ◽  
A. Ya Vovk ◽  
A.F. Kravets ◽  
O.V. Shipil ◽  
A.N. Pogoriliy

AbstractA series of 400 nm thick metal-insulator films of compositions (Co50Fe50)x(Al2O3(100-x) (7 ≤ x ≤ 52; x is in vol.%) are deposited on glass substrates using dual electron beam evaporation technique. The films are nanocrystalline with crystallite sizes of 1-3 nm. Resistivity of the films varies as a function of (I/T)0.5 showing a tunneling type behaviour. The films show isotropic and negative magnetoresistance (GMR). A film of composition (Co50Fe50)82.5(Al2O3)17.5 show maximum tunneling magnetoresistance (TMR) of 7.2% at room temperature and in a magnetic field of 8.2 kOe.


2013 ◽  
Vol 320 ◽  
pp. 150-154
Author(s):  
Hao Ren ◽  
Qun Zeng ◽  
Xi Hui Liang

Nd:YAG thin films have been prepared on Si (100) substrates by electron beam evaporation deposition. The surface morphologies, crystalline phases and optical properties of the Nd:YAG thin films were characterized by x-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy, and spectrophotometer. The crystallization of Nd:YAG thin films was improved after annealing at 1100 °C for 1 hour in vacuum. Excited by a Ti:sapphire laser at 808 nm, photoluminescence spectra of Nd:YAG thin films were measured at room temperature, and the transition of4F3/24I11/2of Nd3+in YAG in the region of 1064 nm were detected by a liquid nitrogen cooled InGaAs detector array.


2013 ◽  
Vol 770 ◽  
pp. 149-152 ◽  
Author(s):  
T. Plirdpring ◽  
M. Horprathum ◽  
C. Chananonnawathorn ◽  
P. Eiamchai ◽  
A. Harnwunggmoung ◽  
...  

Tantalum oxide (Ta2O5) films at 400 nm thickness were prepared at room temperature by DC reactive magnetron sputtering. The effect of annealing temperature on film crystallinity, microstructure and optical properties were investigated. In order to indentify the crystalline structure and film morphology, X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM) measurements were performance. The optical properties were determined by UV-Vis spectrophotometer and spectroscopic ellipsometry (SE). The result showed that, with the annealing treatment at high temperature (700-900°C), the as-deposited films were crystallized to orthorhombic phase of tantalum pentaoxide (β-Ta2O5). In addition, the transmittance spectrum percentage indicated 87%, which corresponded to the obtained optical characteristic. The refractive index varied at 550 nm from 2.17 to 2.21 with increased of the annealing temperature.


1988 ◽  
Vol 128 ◽  
Author(s):  
K. S. Grabowski ◽  
R. A. Kant ◽  
S. B. Qadr

ABSTRACTEpitaxial Ni films were grown on Si(111) substrates to a thickness of about 500 nm by ion beam assisted deposition at room temperature. The films were grown using 25-keV-Ni ions and electron-beam evaporation of Ni at a relative arrival ratio of one ion for every 100 Ni vapor atoms. The ion beam and evaporant flux were both incident at 45° to the sample surface. Standard θ-2θ X-ray diffraction scans revealed the extent of crystallographic texture, while Ni {220} pole figure measurements identified the azimuthal orientation of Ni in the plane of the film. Films grown without the ion beam consisted of nearly randomly oriented fine grains of Ni whereas with bombardment the Ni (111) plane was found parallel to the Si (111) plane. In all the epitaxial cases the Ni [110] direction was perpendicular to the axis of the ion beam, suggesting that the azimuthal orientation of the film was determined by channeling of the ion beam down {110} planar channels in the Ni film. Additional experiments with different ions, energies, and substrates revealed their influence on the degree of epitaxy obtained.


2013 ◽  
Vol 1538 ◽  
pp. 107-114
Author(s):  
Xianzhong Lin ◽  
Jaison Kavalakkatt ◽  
Martha Ch. Lux-Steiner ◽  
Ahmed Ennaoui

ABSTRACTQuaternary semiconductors, Cu2ZnSnS4 and Cu2ZnSnSe4 which contain only earth-abundant elements, have been considered as the alternative absorber layers to Cu(In,Ga)Se2 (CIGS) for thin film solar cells although CIGS-based solar cells have achieved efficiencies over 20 %. In this work we report an air-stable route for preparation of Cu2ZnSn(Sx,Se(1-x))4 (CZTSSe) thin film absorbers by a solution process based on the binary and ternary chalcogenide nanoparticle precursors dispersed in organic solvents. The CZTSSe absorber layers were achieved by spin coating of the ink precursors followed by annealing under Ar/Se atmosphere at temperature up to 580°C. We have investigated the influence of the annealing temperature on the reduction or elimination of detrimental secondary phases. X-ray diffraction combined with Raman spectroscopy was utilized to better identify the secondary phases existing in the absorber layers. Solar cells were completed by chemical bath deposited CdS buffer layer followed by sputtered i-ZnO/ZnO: Al bi-layers and evaporated Ni/Al grids.


2012 ◽  
Vol 1520 ◽  
Author(s):  
Monica Sorescu ◽  
Tianhong Xu ◽  
Steven Herchko

ABSTRACTDifferential scanning calorimetry, X-ray diffraction, and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements. These made use of our recently-developed dual absorber method, which made it possible to determine precisely the recoilless fractions of the amorphous, nanocrystalline and grain boundary phases separately.


1995 ◽  
Vol 10 (9) ◽  
pp. 2336-2342 ◽  
Author(s):  
L.M. Porter ◽  
R.F. Davis ◽  
J.S. Bow ◽  
M.J. Kim ◽  
R.W. Carpenter

Thin films (4-1000 Å) of Pt were deposited via UHV electron beam evaporation at room temperature on monocrystalline, n-type α (6H)-SiC(0001) substrates and examined in terms of chemistry, microstructure, and electrical properties. The as-deposited contacts were polycrystalline and showed excellent rectifying behavior with low ideality factors (n < 1.1) and leakage currents of 5 × 10−8 A/cm2 at −10 V. The Schottky barrier height increased from 1.06 eV before annealing to 1.26 eV after successive 20 min anneals at 450, 550, 650, and 750 °C. In addition, the leakage currents decreased to 2 × 10−8 A/cm2 at −10 V. Interfacial reactions were not observed at annealing temperatures below 750 °C; above this temperature, Pt2Si and C precipitates were identified in the reaction zone.


Sign in / Sign up

Export Citation Format

Share Document