scholarly journals Outage Analysis of Train-to-Train Communication Model over Nakagami-mChannel in High-Speed Railway

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Pengyu Liu ◽  
Xiaojuan Zhou ◽  
Zhangdui Zhong

This paper analyzes the end-to-end outage performance of high-speed-railway train-to-train communication model in high-speed railway over independent identical and nonidentical Nakagami-mchannels. The train-to-train communication is inter-train communication without an aid of infrastructure (for base station). Source train uses trains on other rail tracks as relays to transmit signals to destination train on the same track. The mechanism of such communication among trains can be divided into three cases based on occurrence of possible-occurrence relay trains. We first present a new closed form for the sum of squared independent Nakagami-mvariates and then derive an expression for the outage probability of the identical and non-identical Nakagami-mchannels in three cases. In particular, the problem is improved by the proposed formulation that statistic for sum of squared Nakagami-mvariates with identicalmtends to be infinite. Numerical analysis indicates that the derived analytic results are reasonable and the outage performance is better over Nakagami-mchannel in high-speed railway scenarios.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Pengyu Liu ◽  
Bo Ai ◽  
Zhangdui Zhong ◽  
Xiaojuan Zhou

Railway telematics applications are currently attracting attention and are under intense research. Reliable railway telematics applications increasingly tend to require a subsidiary means to help existent control system make train operation safer and more efficient. Since 2006, train-to-train communication has been studied to respond to such requirements. A key characteristic of train-to-train communication is that operation control to avoid possible accidents is conducted among trains without help of a base station. This paper proposes a novel train-to-train communication model in a physical layer based on multihop and cooperation, taking a high-speed railway propagation channel into account. The mechanism of this model lies in the idea that a source train uses trains on other tracks as relays to transmit signals to destination train on the same track. Based on occurrence of these potential relays, such mechanism can be divided into three cases. In each case, BER is applied to evaluate properties of the proposed communication model. Simulation results show that BER of the train-to-train communication model decreases to10−6when SNR is 10 dB and that the minimum receiving voltage of this model is −84 dBm, which is 8 dBm lower than the standards established by the International Union of Railways (UIC) in a high-speed railway scenario.


2014 ◽  
Vol 556-562 ◽  
pp. 4530-4535
Author(s):  
Shi He ◽  
Bing Gao ◽  
Zhang Jun Fan

In this paper, we investigate the outage performance of a multiuser two-way relaying system over Nakagami-m fading channels. In particular, we consider the amplify-and-forward (AF) relay system with beamforming at the base station. Furthermore, the base station and mobile users have asymmetric traffic requirements. We fist derive a tight lower bound for the outage probability (OP). Moreover, the asymptotic outage probability expression is derived to shed light on the system's diversity order. Finally, Monte Carlo simulations are conducted to verify the analytical results.


2013 ◽  
Vol 15 (13) ◽  
pp. 1681-1694 ◽  
Author(s):  
Chuang Zhang ◽  
Pingyi Fan ◽  
Yunquan Dong ◽  
Ke Xiong

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hyun-Ho Choi ◽  
Wonjong Noh

In a full-duplex (FD) cellular network, a base station transmits data to the downlink (DL) user and receives data from uplink (UL) users at the same time; thereby the interference from UL users to DL users occurs. One of the possible solutions to reduce this interuser interference in the FD cellular network is user pairing, which pairs a DL user with a UL user so that they use the same radio resource at the same time. In this paper, we consider a user pairing problem to minimize outage probability and formulate it as a nonconvex optimization problem. As a solution, we design a low-complexity user pairing algorithm, which first controls the UL transmit power to minimize the interuser interference and then allows the DL user having a worse signal quality to choose first its UL user giving less interference to minimize the outage probability. Then, we perform theoretical outage analysis of the FD cellular network on the basis of stochastic geometry and analyze the performance of the user pairing algorithm. Results show that the proposed user pairing significantly decreases the interuser interference and thus improves the DL outage performance while satisfying the requirement of UL signal-to-interference-plus-noise ratio, compared to the conventional HD mode and a random pairing. We also reveal that there is a fundamental tradeoff between the DL outage and UL outage according to the user pairing strategy (e.g., throughput maximization or outage minimization) in the FD cellular network.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 424 ◽  
Author(s):  
Xianli Gong ◽  
Xinwei Yue ◽  
Feng Liu

In this paper, we investigate a downlink cooperative non-orthogonal multiple access (NOMA) network with decode-and-forward relaying, where two scenarios of user relaying with direct link and user relaying without direct link are discussed in detail. More particularly, the performance of cooperative NOMA system under the assumption of imperfect channel state information (ipCSI) is studied over Nakagami-m fading channels. To evaluate the outage performance of the above discussed two scenarios, the closed-form expressions of outage probability for a pair of users are derived carefully. The diversity orders of users are achieved in the high signal-to-noise region. An error floor appears in the outage probability owing to the existence of channel estimation errors under ipCSI conditions. Simulation results verify the validity of our analysis and show that: (1) NOMA is superior to conventional orthogonal multiple access; (2) The best user relaying location for cooperative NOMA networks should be near to the base station; and (3) The outage performance of distant user with direct link significantly outperforms distant user without direct link by comparing the two scenarios.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Haejoon Jung ◽  
In-Ho Lee

We consider multihop millimeter-wave (mm-Wave) wireless backhaul communications, by which small cell base station (SBS) clusters can connect to a macrocell base station (MBS). Assuming the mm-Wave wireless backhaul links suffer from outage caused by obstacles that block the line-of-sight (LoS) paths, we derive the statistics of a perhop distance based on the blockage model using stochastic geometry and random shape theory and analyze the multihop outage probability using the statistics of a perhop distance. We also provide an optimal number of hops to minimize the end-to-end outage performance between the MBS and the destination SBS cluster when the end-to-end distance is given.


Sign in / Sign up

Export Citation Format

Share Document