scholarly journals The Antiobesity Effect ofPolygonum aviculareL. Ethanol Extract in High-Fat Diet-Induced Obese Mice

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yoon-Young Sung ◽  
Taesook Yoon ◽  
Won-Kyung Yang ◽  
Seung Ju Kim ◽  
Dong-Seon Kim ◽  
...  

The antiobesity effects of aP. aviculareethanol extract (PAE) in high-fat diet- (HFD-) induced obese mice were investigated. The mice were fed an HFD or an HFD supplemented with PAE (400 mg/kg/day) for 6.5 weeks. The increased body weights, adipose tissue weight, and adipocyte area as well as serum total triglyceride, leptin, and malondialdehyde concentrations were decreased in PAE-treated HFD-induced obese mice relative to the same measurements in untreated obese mice. Furthermore, PAE significantly suppressed the elevated mRNA expression levels of sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptorγ, fatty acid synthase, and adipocyte protein 2 in the white adipose tissue of obese mice. In addition, PAE treatment of 3T3-L1 cells inhibited adipocyte differentiation and fat accumulation in a dose-dependent manner. These results suggest that PAE exerts antiobesity effects in HFD-induced obese mice through the suppression of lipogenesis in adipose tissue and increased antioxidant activity.

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3035
Author(s):  
Jiyoung Moon ◽  
Min Jin Ha ◽  
Min-Jeong Shin ◽  
Oh Yoen Kim ◽  
Eun Hye Yoo ◽  
...  

Since arginase has been shown to compete with nitric oxide (NO) synthase, emerging evidence has reported that arginase inhibition improves obesity by increasing NO production. Semen cuscutae (SC), which is a well-known Chinese medicine, has multiple biological functions such as anti-oxidant function and immune regulation. In this study, we investigated whether the SC as a natural arginase inhibitor influences hepatic lipid abnormalities and whole-body adiposity in high-fat diet (HFD)-induced obese mice. The lipid accumulation was significantly reduced by SC treatment in oleic acid-induced hepatic steatosis in vitro. Additionally, SC supplementation substantially lowered HFD-induced increases in arginase activity and weights of liver and visceral fat tissue, while increasing hepatic NO. Furthermore, elevated mRNA expressions of sterol regulatory element-binding transcription factor 1 (SREBP-1c), fatty-acid synthase (FAS), peroxisome proliferator-activated receptor-gamma (PPAR-γ)1, and PPAR-γ2 in HFD-fed mice were significantly attenuated by SC supplementation. Taken together, SC, as a novel natural arginase inhibitor, showed anti-obesity properties by modulating hepatic arginase and NO production and metabolic pathways related to hepatic triglyceride (TG) metabolism.


2021 ◽  
pp. 1-14
Author(s):  
S.J. Kim ◽  
S.-I. Choi ◽  
M. Jang ◽  
Y.-A. Jeong ◽  
C.-H. Kang ◽  
...  

We investigated the anti-obesity effect and the underlying mechanisms of action of human-derived Limosilactobacillus fermentum MG4231, MG4244, and their combination, in high-fat diet-induced obese mice. Administration of the Limosilactobacillus strains decreased body weight gain, liver and adipose tissue weight, and glucose tolerance. Serum levels of total cholesterol, low-density lipoprotein-cholesterol, and leptin were reduced, while adiponectin increased. The administration of Limosilactobacillus strains improved the histopathological features of liver tissue, such as hepatic atrophy and inflammatory penetration, and significantly reduced the content of triglyceride in the liver. Limosilactobacillus administration discovered a significant reduction in the size of the adipocytes in the epididymal tissue. Limosilactobacillus treatment significantly reduced the expression of important regulators in lipid metabolism, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid synthase (FAS), adipocyte-protein 2, and lipoprotein lipase in the epididymal tissue. Also, Limosilactobacillus lowered sterol regulatory element-binding protein 1-c and FAS in the liver tissue. Such changes in the expression of these regulators in both liver and epididymis tissue were caused by Limosilactobacillus upregulating phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. Therefore, we suggest that the use of the combination of L. fermentum MG4231 and MG4244, as probiotics could effectively inhibit adipogenesis and lipogenesis from preventing obesity.


2021 ◽  
Vol 21 (7) ◽  
pp. 3943-3949
Author(s):  
Jaegoo Yeon ◽  
Sung-Suk Suh ◽  
Ui-Joung Youn ◽  
Badamtsetseg Bazarragchaa ◽  
Ganbold Enebish ◽  
...  

Iris bungei Maxim. (IB), which is native to China and Mongolia, is used as a traditional medicine for conditions such as inflammation, cancer, and bacterial infections. However, the effects of Iris bungei Maxim. on adipocyte differentiation have not been studied. In the present study, we first demonstrated the molecular mechanisms underlying the adipogenic activity of the methanol extract of Mongolian I. bungei Maxim. (IB). IB significantly enhanced intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes in a concentration-dependent manner. Moreover, IB markedly stimulated the expression of genes related to adipogenesis such as peroxisome proliferator-activated receptor γ, adiponectin, and aP2. In addition, we also observed that IB induces lipogenic genes such as fatty acid synthase, sterol regulatory element binding protein 1c, stearoyl-CoA desaturase, and acetyl-CoA carboxylase. Interestingly IB regulated adipocyte differentiation in both the early and middle stages. Taken together, these adipogenic and lipogenic effects of IB suggest its efficacy for the prevention and/or treatment of type 2 diabetes.


2017 ◽  
Vol 4 (11) ◽  
pp. 170917 ◽  
Author(s):  
Yanyun Pan ◽  
Dandan Zhao ◽  
Na Yu ◽  
Tian An ◽  
Jianan Miao ◽  
...  

Curcumin is an active component derived from Curcuma longa L. which is a traditional Chinese medicine that is widely used for treating metabolic diseases through regulating different molecular pathways. Here, in this study, we aimed to comprehensively investigate the effects of curcumin on glycolipid metabolism in vivo and in vitro and then determine the underlying mechanism. Male C57BL/6 J obese mice and 3T3-L1 adipocytes were used for in vivo and in vitro study, respectively. Our results demonstrated that treatment with curcumin for eight weeks decreased body weight, fat mass and serum lipid profiles. Meanwhile, it lowered fasting blood glucose and increased the insulin sensitivity in high-fat diet-induced obese mice. In addition, curcumin stimulated lipolysis and improved glycolipid metabolism through upregulating the expressions of adipose triglyceride lipase and hormone-sensitive lipase, peroxisome proliferator activated receptor γ/α (PPARγ/α) and CCAAT/enhancer binding proteinα (C/EBPα) in adipose tissue of the mice. In differentiated 3T3-L1 cells, curcumin reduced glycerol release and increased glucose uptake via upregulating PPARγ and C/EBPα. We concluded that curcumin has the potential to improve glycolipid metabolism disorders caused by obesity through regulating PPARγ signalling pathway.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1848 ◽  
Author(s):  
Miey Park ◽  
Anshul Sharma ◽  
Hae-Jeung Lee

Delphinidin-3-O-β-glucoside (D3G) is a health-promoting anthocyanin whose anti-obesity activity has not yet been thoroughly investigated. We examined the effects of D3G on adipogenesis and lipogenesis in 3T3-L1 adipocytes and primary white adipocytes using real-time RT-PCR and immunoblot analysis. D3G significantly inhibited the accumulation of lipids in a dose-dependent manner without displaying cytotoxicity. In the 3T3-L1 adipocytes, D3G downregulated the expression of key adipogenic and lipogenic markers, which are known as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBP1), CCAAT/enhancer-binding protein alpha (C/EBPα), and fatty acid synthase (FAS). Moreover, the relative protein expression of silent mating type information regulation 2 homolog 1 (SIRT1) and carnitine palmitoyltransferase-1 (CPT-1) were increased, alongside reduced lipid levels and the presence of several small lipid droplets. Furthermore, D3G increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which suggests that D3G may play a role in AMPK and ACC activation in adipocytes. Our data indicate that D3G attenuates adipogenesis and promotes lipid metabolism by activating AMPK-mediated signaling, and, hence, could have a therapeutic role in the management and treatment of obesity.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1190 ◽  
Author(s):  
Su-Min Lim ◽  
Hyun Sook Lee ◽  
Jae In Jung ◽  
So Mi Kim ◽  
Nam Young Kim ◽  
...  

Aronia melanocarpa are a rich source of anthocyanins that have received considerable interest for their relations to human health. In this study, the anti-adipogenic effect of cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract (AM-Ex) and its underlying mechanisms were investigated in an in vivo system. Five-week-old male C57BL/6N mice were randomly divided into five groups for 8-week feeding with a control diet (CD), a high-fat diet (HFD), or a HFD with 50 (AM-Ex 50), 100 (AM-Ex 100), or 200 AM-Ex (AM-Ex 200) mg/kg body weight/day. HFD-fed mice showed a significant increase in body weight compared to the CD group, and AM-Ex dose-dependently inhibited this weight gain. AM-Ex significantly reduced the food intake and the weight of white fat tissue, including epididymal fat, retroperitoneal fat, mesenteric fat, and inguinal fat. Treatment with AM-Ex (50 to 200 mg/kg) reduced serum levels of leptin, insulin, triglyceride, total cholesterol, and low density lipoprotein (LDL)-cholesterol. Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that AM-Ex suppressed adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma coactivator-1α, acetyl-CoA carboxylase 1, ATP-citrate lyase, fatty acid synthase, and adipocyte protein 2 messenger RNA (mRNA) expressions. These results suggest that AM-Ex is potentially beneficial for the suppression of HFD-induced obesity by modulating multiple pathways associated with adipogenesis and food intake.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2042 ◽  
Author(s):  
Yae Rim Choi ◽  
Jaewon Shim ◽  
Min Jung Kim

Soy isoflavones are popular ingredients with anti-adipogenic and anti-lipogenic properties. The anti-adipogenic and anti-lipogenic properties of genistein are well-known, but those of genistin and glycitein remain unknown, and those of daidzein are characterized by contrasting data. Therefore, the purpose of our study was to investigate the effects of daidzein, glycitein, genistein, and genistin on adipogenesis and lipogenesis in 3T3-L1 cells. Proliferation of 3T3-L1 preadipocytes was unaffected by genistin and glycitein, but it was affected by 50 and 100 µM genistein and 100 µM daidzein for 48 h. Among the four isoflavones, only 50 and 100 µM genistin and genistein markedly suppressed lipid accumulation during adipogenesis in 3T3-L1 cells through a similar signaling pathway in a dose-dependent manner. Genistin and genistein suppress adipocyte-specific proteins and genes, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), and adipocyte binding protein 2 (aP2)/fatty acid-binding protein 4 (FABP4), and lipogenic enzymes such as ATP citrate lyase (ACL), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FAS). Both isoflavones also activate AMP-activated protein kinase α (AMPKα), an essential factor in adipocyte differentiation, and inhibited sterol regulatory element-binding transcription factor 1c (SREBP-1c). These results indicate that genistin is a potent anti-adipogenic and anti-lipogenic agent.


Sign in / Sign up

Export Citation Format

Share Document