scholarly journals Porcine Models of Accelerated Coronary Atherosclerosis: Role of Diabetes Mellitus and Hypercholesterolemia

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Damir Hamamdzic ◽  
Robert L. Wilensky

Animal models of atherosclerosis have proven to be an invaluable asset in understanding the pathogenesis of the disease. However, large animal models may be needed in order to assess novel therapeutic approaches to the treatment of atherosclerosis. Porcine models of coronary and peripheral atherosclerosis offer several advantages over rodent models, including similar anatomical size to humans, as well as genetic expression and development of high-risk atherosclerotic lesions which are similar to humans. Here we review the four models of porcine atherosclerosis, including the diabetic/hypercholesterolemic model, Rapacz-familial hypercholesterolemia pig, the (PCSK9) gain-of-function mutant pig model, and the Ossabaw miniature pig model of metabolic syndrome. All four models reliably represent features of human vascular disease.

2020 ◽  
Vol 9 (3) ◽  
pp. 201-216
Author(s):  
David Howland ◽  
Zdenka Ellederova ◽  
Neil Aronin ◽  
Deborah Fernau ◽  
Jill Gallagher ◽  
...  

Genetically modified rodent models of Huntington’s disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Yoriyasu Suzuki ◽  
Alan C. Yeung ◽  
Fumiaki Ikeno

To improve human health, scientific discoveries must be translated into practical applications. Inherent in the development of these technologies is the role of preclinical testing using animal models. Although significant insight into the molecular and cellular basis has come from small animal models, significant differences exist with regard to cardiovascular characteristics between these models and humans. Therefore, large animal models are essential to develop the discoveries from murine models into clinical therapies and interventions. This paper will provide an overview of the more frequently used large animal models, especially porcine models for preclinical studies.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
B. Yahaya

Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.


2014 ◽  
Author(s):  
Joanna Moreton ◽  
Sunir Malla ◽  
Aziz Aboobaker ◽  
Rachael Tarlinton ◽  
Richard D Emes

The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.


2014 ◽  
Author(s):  
Joanna Moreton ◽  
Sunir Malla ◽  
Aziz Aboobaker ◽  
Rachael Tarlinton ◽  
Richard D Emes

The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.


2010 ◽  
Vol 88 (suppl_13) ◽  
pp. E61-E72 ◽  
Author(s):  
L. P. Reynolds ◽  
P. P. Borowicz ◽  
J. S. Caton ◽  
K. A. Vonnahme ◽  
J. S. Luther ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 6092
Author(s):  
Bastian Amend ◽  
Niklas Harland ◽  
Jasmin Knoll ◽  
Arnulf Stenzl ◽  
Wilhelm K. Aicher

Stress urinary incontinence (SUI) is a significant health concern for patients affected, impacting their quality of life severely. To investigate mechanisms contributing to SUI different animal models were developed. Incontinence was induced under defined conditions to explore the pathomechanisms involved, spontaneous recovery, or efficacy of therapies over time. The animal models were coined to mimic known SUI risk factors such as childbirth or surgical injury. However, animal models neither reflect the human situation completely nor the multiple mechanisms that ultimately contribute to the pathogenesis of SUI. In the past, most SUI animal studies took advantage of rodents or rabbits. Recent models present for instance transgenic rats developing severe obesity, to investigate metabolic interrelations between the disorder and incontinence. Using recombinant gene technologies, such as transgenic, gene knock-out or CRISPR-Cas animals may narrow the gap between the model and the clinical situation of patients. However, to investigate surgical regimens or cell therapies to improve or even cure SUI, large animal models such as pig, goat, dog and others provide several advantages. Among them, standard surgical instruments can be employed for minimally invasive transurethral diagnoses and therapies. We, therefore, focus in this review on large animal models of SUI.


Sign in / Sign up

Export Citation Format

Share Document