scholarly journals Nonlinear Multivariate Calibration of Shelf Life of Preserved Eggs (Pidan) by Near Infrared Spectroscopy: Stacked Least Squares Support Vector Machine with Ensemble Preprocessing

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lu Xu ◽  
Si-Min Yan ◽  
Chen-Bo Cai ◽  
Xiao-Ping Yu ◽  
Jian-Hui Jiang ◽  
...  

This paper aims at developing a rapid and nondestructive method for analyzing the shelf life of preserved eggs (pidan) by near infrared (NIR) spectroscopy and nonlinear multivariate calibration. A major concern with a nonlinear model is that the noncomposition-correlated spectral variations among pidan objects of different batches and production dates would unnecessarily increase model complexity and cause overfitting and degradation of prediction. To reduce the negative influence of unwanted spectral variations, stacked least squares support vector machine (LS-SVM) with an ensemble of 62 commonly used preprocessing methods is proposed to automatically optimize data preprocessing and develop the nonlinear model. The analysis results indicate that stacked LS-SVM can obtain stable calibration model, and the prediction accuracy is improved compared with models with single-preprocessing methods. Since LS-SVM is much faster than its ordinary counterparts, stacked LS-SVM with ensemble preprocessing can be performed within an acceptable computational time. When the objects and spectral variations are very complex, the proposed method can provide a useful tool for data preprocessing and nonlinear multivariate calibration.

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Lu Xu ◽  
Qiong Shi ◽  
Bang-Cheng Tang ◽  
Shunping Xie

A rapid indicator of mercury in soil using a plant (Artemisia lavandulaefolia DC., ALDC) commonly distributed in mercury mining area was established by fusion of Fourier-transform near-infrared (FT-NIR) spectroscopy coupled with least squares support vector machine (LS-SVM). The representative samples of ALDC (stem and leaf) were gathered from the surrounding and distant areas of the mercury mines. As a reference method, the total mercury contents in soil and ALDC samples were determined by a direct mercury analyzer incorporating high-temperature decomposition, catalytic adsorption for impurity removal, amalgamation capture, and atomic absorption spectrometry (AAS). Based on the FT-NIR data of ALDC samples, LS-SVM models were established to distinguish mercury-contaminated and ordinary soil. The results of reference analysis showed that the mercury level of the areas surrounding mercury mines (0–3 kilometers, 7.52–88.59 mg/kg) was significantly higher than that of the areas distant from mercury mines (>5 kilometers, 0–0.75 mg/kg). The LS-SVM classification model of ALDC samples was established based on the original spectra, smoothed spectra, second-derivative (D2) spectra, and standard normal transformation (SNV) spectra, respectively. The prediction accuracy of D2-LS-SVM was the highest (0.950). FT-NIR combined with LS-SVM modeling can quickly and accurately identify the contaminated ALDC. Compared with traditional methods which rely on naked eye observation of plants, this method is objective and more sensitive and applicable.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Yong-Dong Xu ◽  
Yan-Ping Zhou ◽  
Jing Chen

Sesame oil produced by the traditional aqueous extraction process (TAEP) has been recognized by its pleasant flavor and high nutrition value. This paper developed a rapid and nondestructive method to predict the sesame oil yield by TAEP using near-infrared (NIR) spectroscopy. A collection of 145 sesame seed samples was measured by NIR spectroscopy and the relationship between the TAEP oil yield and the spectra was modeled by least-squares support vector machine (LS-SVM). Smoothing, taking second derivatives (D2), and standard normal variate (SNV) transformation were performed to remove the unwanted variations in the raw spectra. The results indicated that D2-LS-SVM (4000–9000 cm−1) obtained the most accurate calibration model with root mean square error of prediction (RMSEP) of 1.15 (%, w/w). Moreover, the RMSEP was not significantly influenced by different initial values of LS-SVM parameters. The calibration model could be helpful to search for sesame seeds with higher TAEP oil yields.


2017 ◽  
Vol 25 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Rubing Zhao ◽  
Xiaojian Xu ◽  
Jiale Li ◽  
Cheng Li ◽  
Jinhong Chen ◽  
...  

A near infrared calibration model with higher precision and better stability was constructed in the present study, using 280 cottonseed samples. The reference phytic acid contents were determined by high-performance ion chromatography. A combination of Savitzky–Golay smoothing, standard normal variate, and the first derivative was chosen as the spectral pre-treatment method. Monte Carlo uninformative variable elimination was proposed for spectral variable selection. The regression methods of partial least squares, least squares support vector machines, and weighted least squares support vector machines were developed for the calibration model. The optimal near infrared calibration model for phytic acid contents in the cottonseed meals was least squares support vector machines, with r2 = 0.97, RPD = 5.53, RMSECV = 0.06%, and RMSEP = 0.05%. This robust method can replace the traditional method of phytic acid determination in cottonseed meals.


2007 ◽  
Vol 61 (7) ◽  
pp. 747-754 ◽  
Author(s):  
Robert D. Guenard ◽  
Christine M. Wehlburg ◽  
Randy J. Pell ◽  
David M. Haaland

This paper reports on the transfer of calibration models between Fourier transform near-infrared (FT-NIR) instruments from four different manufacturers. The piecewise direct standardization (PDS) method is compared with the new hybrid calibration method known as prediction augmented classical least squares/partial least squares (PACLS/PLS). The success of a calibration transfer experiment is judged by prediction error and by the number of samples that are flagged as outliers that would not have been flagged as such if a complete recalibration were performed. Prediction results must be acceptable and the outlier diagnostics capabilities must be preserved for the transfer to be deemed successful. Previous studies have measured the success of a calibration transfer method by comparing only the prediction performance (e.g., the root mean square error of prediction, RMSEP). However, our study emphasizes the need to consider outlier detection performance as well. As our study illustrates, the RMSEP values for a calibration transfer can be within acceptable range; however, statistical analysis of the spectral residuals can show that differences in outlier performance can vary significantly between competing transfer methods. There was no statistically significant difference in the prediction error between the PDS and PACLS/PLS methods when the same subset sample selection method was used for both methods. However, the PACLS/PLS method was better at preserving the outlier detection capabilities and therefore was judged to have performed better than the PDS algorithm when transferring calibrations with the use of a subset of samples to define the transfer function. The method of sample subset selection was found to make a significant difference in the calibration transfer results using the PDS algorithm, while the transfer results were less sensitive to subset selection when the PACLS/PLS method was used.


Sign in / Sign up

Export Citation Format

Share Document