scholarly journals Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yue Han ◽  
Junjian Z. Chen

Intrinsic oxidative stress through increased production of reactive oxygen species (ROS) is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA) is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion, is very sensitive to exogenous H2O2but independent of endogenous ROS production in both prostate cancer and normal cells. In contrast, aggressive prostate cancer cells exhibit a more than 10-fold sensitivity to H2O2-induced cell toxicity than normal cells, and a cascade of secondary ROS production is a critical determinant to the differential response. We propose a new paradigm to account for different mechanisms governing cellular oxidative stress, cell toxicity, and DNA damage with important ramifications in devising new techniques and strategies in prostate cancer prevention and treatment.

2009 ◽  
Vol 418 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Nùkhet Aykin-Burns ◽  
Iman M. Ahmad ◽  
Yueming Zhu ◽  
Larry W. Oberley ◽  
Douglas R. Spitz

Cancer cells, relative to normal cells, demonstrate increased sensitivity to glucose-deprivation-induced cytotoxicity. To determine whether oxidative stress mediated by O2•− and hydroperoxides contributed to the differential susceptibility of human epithelial cancer cells to glucose deprivation, the oxidation of DHE (dihydroethidine; for O2•−) and CDCFH2 [5- (and 6-)carboxy-2′,7′-dichlorodihydrofluorescein diacetate; for hydroperoxides] was measured in human colon and breast cancer cells (HT29, HCT116, SW480 and MB231) and compared with that in normal human cells [FHC cells, 33Co cells and HMECs (human mammary epithelial cells)]. Cancer cells showed significant increases in DHE (2–20-fold) and CDCFH2 (1.8–10-fold) oxidation, relative to normal cells, that were more pronounced in the presence of the mitochondrial electron-transport-chain blocker, antimycin A. Furthermore, HCT116 and MB231 cells were more susceptible to glucose-deprivation-induced cytotoxicity and oxidative stress, relative to 33Co cells and HMECs. HT29 cells were also more susceptible to 2DG (2-deoxyglucose)-induced cytotoxicity, relative to FHC cells. Overexpression of manganese SOD (superoxide dismutase) and mitochondrially targeted catalase significantly protected HCT116 and MB231 cells from glucose-deprivation-induced cytotoxicity and oxidative stress and also protected HT29 cells from 2DG-induced cytotoxicity. These results show that cancer cells (relative to normal cells) demonstrate increased steady-state levels of ROS (reactive oxygen species; i.e. O2•− and H2O2) that contribute to differential susceptibility to glucose-deprivation-induced cytotoxicity and oxidative stress. These studies support the hypotheses that cancer cells increase glucose metabolism to compensate for excess metabolic production of ROS and that inhibition of glucose and hydroperoxide metabolism may provide a biochemical target for selectively enhancing cytotoxicity and oxidative stress in human cancer cells.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Darbinian N ◽  
Darbinyan A ◽  
Merabova N ◽  
Selzer ME ◽  
Amini S

Introduction: Mitochondrial dysregulation is a key event in HIV-1 infection. Recent studies have suggested that age-related neurodegenerative disorders are associated with increased mitochondrial DNA (mtDNA) damage. As accelerated ageing was found in HIV-1 patients, we hypothesized that HIV-1 infection or HIV-1 proteins can lead to mtDNA damage. Unrepaired mtDNA impairs mitochondrial function, which can lead to oxidative stress and cell death. Investigations of mechanisms of mtDNA damage are limited by the lack of available human models.


2020 ◽  
Vol 20 (6) ◽  
pp. 498-507 ◽  
Author(s):  
Connor A.H. Thompson ◽  
Judy M.Y. Wong

Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere repeat synthesis activity, telomerase may have other biologically important functions. The canonical roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase (TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed at higher levels than necessary for maintaining functional telomere length, suggesting other possible adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics, and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily show cellular protective effects, and nuclear TERT has been shown to protect against cell death following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria, TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding the spectrum of non-canonical functions of telomerase may have important implications for the rational design of anti-cancer chemotherapeutic drugs.


2020 ◽  
Vol 9 ◽  
Author(s):  
Jerome Lacombe ◽  
Titouan Cretignier ◽  
Laetitia Meli ◽  
E. M. Kithsiri Wijeratne ◽  
Jean-Luc Veuthey ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


Sign in / Sign up

Export Citation Format

Share Document