scholarly journals Microbial Purification of Postfermentation Medium after 1,3-PD Production from Raw Glycerol

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Daria Szymanowska-Powałowska ◽  
Joanna Piątkowska ◽  
Katarzyna Leja

1,3-Propanediol (1,3-PD) is an important chemical product which can be used to produce polyesters, polyether, and polyurethanes. In the process of conversion of glycerol to 1,3-PD byClostridiumlarge number of byproducts (butyric, acetic and lactic acid) are generated in the fermentation medium. The aim of this work was to isolate bacteria strains capable of the utilization of these byproducts. Screening of 30 bacterial strains was performed using organic acids as carbon source. Selected isolates were taxonomically characterized and identified asAlcaligenes faecalisandBacillus licheniformis. The most active strains,Alcaligenes faecalisJP1 andBacillus licheniformisJP19, were able to utilize organic acids almost totally. Finally, it was find out that by the use of coculture (C. butyricumDSP1 andA. faecalisJP1) increased volumetric productivity of 1,3-PD production (1.07 g/L/h) and the yield equal to 0.53 g/g were obtained in bioreactor fermentation. Moreover, the only by-product present was butyric acid in a concentration below 1 g/L.

2016 ◽  
Vol 27 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Mihaela Carmen Eremia ◽  
Irina Lupescu ◽  
Mariana Vladu ◽  
Maria Petrescu ◽  
Gabriela Savoiu ◽  
...  

Abstract Polyhydroxyalcanoates (PHAs) are specifically produced by a wide variety of bacteria, as an intracellular energy reserve in the form of homo- and copolymers of [R]-β-hydroxyalkanoic acids, depending on the C source used for microorganism growth, when the cells are grown under stressing conditions. In this paper we present microbiological accumulation of poly-3-hydroxyoctanoate (PHO) by using a consortium of bacterial strains, Pseudomonas putida and Bacillus subtilis, in a rate of 3:1, grown on a fermentation medium based on sodium octanoate as the sole carbon source. The experiments performed in the above mentioned conditions led to the following results: from 18.70 g sodium octanoate (7.72 g/L in the fermentation medium) used up during the bioprocess, 3.93-3.96 g/L dry bacterial biomass and 1.834 - 1.884 g/L PHA, containing 85.83 - 86.8% PHO, were obtained.


2019 ◽  
Author(s):  
Masaaki Motoori ◽  
Koji Tanaka ◽  
Keijiro Sugimura ◽  
Hiroshi Miyata ◽  
Takuro Saito ◽  
...  

Abstract Background: The intestinal epithelial barrier allows absorption of dietary nutrients and prevents passage of pathogens and toxins into the body. Severe insults have a negative impact on the intestinal environment, which may decrease intestinal barrier function and cause bacterial translocation. Bacterial translocation, which can cause infectious complications, is the passage of microbes from the gastrointestinal tract across the mucosal barrier to extraintestinal sites. The aim of this study was to investigate the correlation between concentrations of preoperative fecal organic acids and the occurrence of postoperative infectious complications in patients with esophageal cancer. Methods: Fifty-five patients with esophageal cancer who underwent esophagectomy were enrolled in this study. All patients were administered perioperative synbiotics. Perioperative clinical characteristics and concentrations of preoperative fecal organic acids were compared between patients with or without postoperative infectious complications. Results: Postoperative infectious complications occurred in 10 patients. In patients with complications, the concentrations of acetic acid and propionic acid were significantly lower than in patients without complications (p=0.044 and 0.032, respectively). The concentration of butyric acid was nonsignificantly lower, while the concentration of lactic acid was nonsignificantly higher in patients with complications. The calculated gap between the concentrations of fecal acetic acid plus propionic acid plus butyric acid minus lactic acid was significantly lower in patients with complications. Multivariate analysis revealed that a low gap between acetic acid plus propionic acid plus butyric acid minus lactic acid was an independent risk factor for postoperative infectious complications (p=0.027). Conclusions : Preoperative fecal concentrations of organic acids had a clinically important impact on the occurrence of postoperative infectious complications in patients with esophageal cancer. To reduce postoperative infectious complications, it may be useful to modulate the intestinal environment and maintain concentrations of fecal organic acids before surgery.


2020 ◽  
Author(s):  
Masaaki Motoori ◽  
Koji Tanaka ◽  
Keijiro Sugimura ◽  
Hiroshi Miyata ◽  
Takuro Saito ◽  
...  

Abstract Background: The intestinal epithelial barrier allows absorption of dietary nutrients and prevents passage of pathogens and toxins into the body. Severe insults have a negative impact on the intestinal environment, which may decrease intestinal barrier function and cause bacterial translocation. Bacterial translocation, which can cause infectious complications, is defined as the passage of microbes from the gastrointestinal tract across the mucosal barrier to extraintestinal sites. The aim of this study was to investigate the correlation between concentrations of preoperative fecal organic acids and the occurrence of postoperative infectious complications in patients with esophageal cancer. Methods: Fifty-five patients with esophageal cancer who underwent esophagectomy were enrolled in this study. Perioperative synbiotics were administered to all patients. Perioperative clinical characteristics and concentrations of preoperative fecal organic acids were compared between patients with and without postoperative infectious complications. Results: Postoperative infectious complications occurred in 10 patients. In patients with complications, the concentrations of acetic acid and propionic acid were significantly lower than in patients without complications (p=0.044 and 0.032, respectively). The concentration of butyric acid was nonsignificantly lower in patients with complications, while the concentration of lactic acid was nonsignificantly higher. The calculated gap between the concentrations of fecal acetic acid plus propionic acid plus butyric acid minus lactic acid was significantly lower in patients with complications. Multivariate analysis revealed that a low gap between acetic acid plus propionic acid plus butyric acid minus lactic acid was an independent risk factor for postoperative infectious complications (p=0.027). Conclusions : Preoperative fecal concentrations of organic acids had a clinically important impact on the occurrence of postoperative infectious complications in patients with esophageal cancer. To reduce postoperative infectious complications, it may be useful to modulate the intestinal environment and maintain concentrations of fecal organic acids before surgery.


1962 ◽  
Vol 42 (4) ◽  
pp. 686-691 ◽  
Author(s):  
D. A. Shearer ◽  
W. E. Cordukes

The organic acids of legume silages were greatly affected by the ensiling conditions. The volatile acids were low and lactic acid was high in silages from medium to high dry matter forages ensiled at moderate to high initial compaction. Bisulphite had little effect on the acid contents of such silages. Butyric acid was high and lactic acid was low in silages from low dry matter forages ensiled at low compaction. Bisulphite reduced the butyric and increased the lactic acid contents of these silages.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Chae Eun Song ◽  
Han Hyo Shim ◽  
Palaniselvam Kuppusamy ◽  
Young-IL Jeong ◽  
Kyung Dong Lee

The objective of this study was to investigate alginate microencapsulated lactic acid bacteria (LAB) fermentation quality of radish kimchi sample and its potential survivability in different acidic and alkaline environments. Initially, we isolated 45 LAB strains. One of them showed fast growth pattern with potential probiotic and antifungal activities against Aspergillus flavus with a zone of inhibition calculated with 10, 8, 4mm for the 4th, 5th, and 6th day, respectively. Therefore, this strain (KCC-42) was chosen for microencapsulation with alginate biopolymer. It showed potential survivability in in-vitro simulated gastrointestinal fluid and radish kimchi fermentation medium. The survival rate of this free and encapsulated LAB KCC-42 was 6.85 × 105 and 7.48× 105 CFU/ml, respectively; the viability count was significantly higher than nonencapsulated LAB in simulated gastrointestinal juices (acid, bile, and pancreatin) and under radish kimchi fermentation environment. Kimchi sample added with this encapsulated LAB showed increased production of organic acids compared to nonencapsulated LAB sample. Also, the organic acids such as lactic acid, acetic acid, propionic acid, and succinic acid production in fermented kimchi were measured 59mM, 26mM, 14mM, and 0.6mM of g/DW, respectively. The production of metabolites such as lactic acid, acetic acid, and succinic acid and the bacteria population was high in microencapsulated LAB samples compared with free bacteria added kimchi sample. Results of this study indicate that microencapsulated LAB KCC-42 might be a useful strategy to develop products for food and healthcare industries.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3519 ◽  
Author(s):  
Yuxuan Liu ◽  
Huan Cheng ◽  
Huiyan Liu ◽  
Ruoshuang Ma ◽  
Jiangtao Ma ◽  
...  

Microorganisms can be used for enhancing flavors or metabolizing functional compounds. The fermented-food-derived bacterial strains comprising Bacillus velezensis, Bacillus licheniformis, and Lactobacillus reuteri mixed with Lactobacillus rhamnosus and Lactobacillus plantarum were used to ferment goji berry (Lycium barbarum L.) juice in this study. The fermentation abilities and antioxidant capacities of different mixtures of multiple strains in goji juice were compared. The results showed that the lactic acid contents increased 9.24–16.69 times from 25.30 ± 0.71 mg/100 mL in goji juice fermented using the SLV (Lactobacillus rhamnosus, Lactobacillus reuteri, and Bacillus velezensis), SZP (Lactobacillus rhamnosus, Lactobacillus plantarum, and Bacillus licheniformis), and SZVP (Lactobacillus rhamnosus, Lactobacillus plantarum, Bacillus velezensis, and Bacillus licheniformis) mixtures, and the protein contents increased 1.31–2.11 times from 39.23 ± 0.67 mg/100 mL. In addition, their contents of volatile compounds increased with positive effects on aroma in the fermented juices. Conversion of the free and bound forms of phenolic acids and flavonoids in juice was influenced by fermentation, and the antioxidant capacity improved significantly. Fermentation enhanced the contents of lactic acid, proteins, volatile compounds, and phenols. The antioxidant capacity was strongly correlated with the phenolic composition.


2020 ◽  
Author(s):  
Masaaki Motoori ◽  
Koji Tanaka ◽  
Keijiro Sugimura ◽  
Hiroshi Miyata ◽  
Takuro Saito ◽  
...  

Abstract Background: The intestinal epithelial barrier allows absorption of dietary nutrients and prevents passage of pathogens and toxins into the body. Severe insults have a negative impact on the intestinal environment, which may decrease intestinal barrier function and cause bacterial translocation. Bacterial translocation, which can cause infectious complications, is defined as the passage of microbes from the gastrointestinal tract across the mucosal barrier to extraintestinal sites. The aim of this study was to investigate the correlation between concentrations of preoperative fecal organic acids and the occurrence of postoperative infectious complications in patients with esophageal cancer. Methods: Fifty-five patients with esophageal cancer who underwent esophagectomy were enrolled in this study. Perioperative synbiotics were administered to all patients. Perioperative clinical characteristics and concentrations of preoperative fecal organic acids were compared between patients with and without postoperative infectious complications. Results: Postoperative infectious complications occurred in 10 patients. In patients with complications, the concentrations of acetic acid and propionic acid were significantly lower than in patients without complications (p=0.044 and 0.032, respectively). The concentration of butyric acid was nonsignificantly lower in patients with complications, while the concentration of lactic acid was nonsignificantly higher. The calculated gap between the concentrations of fecal acetic acid plus propionic acid plus butyric acid minus lactic acid was significantly lower in patients with complications. Multivariate analysis revealed that a low gap between acetic acid plus propionic acid plus butyric acid minus lactic acid was an independent risk factor for postoperative infectious complications (p=0.027). Conclusions : Preoperative fecal concentrations of organic acids had a clinically important impact on the occurrence of postoperative infectious complications in patients with esophageal cancer. To reduce postoperative infectious complications, it may be useful to modulate the intestinal environment and maintain concentrations of fecal organic acids before surgery.


2023 ◽  
Vol 83 ◽  
Author(s):  
B. Mazhar ◽  
N. Jahan ◽  
M. Chaudhry ◽  
I. Liaqat ◽  
M. Dar ◽  
...  

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


2014 ◽  
Vol 86 (3) ◽  
pp. 325-332 ◽  
Author(s):  
Hiromi Kimoto-Nira ◽  
Seishi Yamasaki ◽  
Keisuke Sasaki ◽  
Naoko Moriya ◽  
Akio Takenaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document