scholarly journals Spatial Distribution and Temporal Variability of Ammonium-Nitrogen, Phosphorus, and Potassium in a Rice Field in Corrientes, Argentina

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Luis Alberto Morales ◽  
Eva Vidal Vázquez ◽  
Jorge Paz-Ferreiro

Proper and effective management of soil nutrients requires assessment of their variability at the field scale. We compare the effects of lime amendment rate on the spatial variability of three macronutrient forms (NH4+-N, Olsen P, and Mehlich-1 K) in a paddy soil at three different dates during the growth period of a rice crop. The field work was carried out near Corrientes, Argentina. Lime treatments were 0, 625, and 1250 kg ha−1dolomite, and each liming dose was applied to a 1.7 ha field. Ninety-three soil samples per treatment were first collected in aerobic conditions and then two more times after flooding, at bunch formation and flowering. SoilNH4+-N increased along time, whereas P was highest at bunch formation and K steadily decreased along the rice growth period. Dolomite addition increased macronutrient availability at the first and second samplings, but its effects at the third sampling depended on the element. The three soil nutrients analyzed displayed strong patterns of spatial dependence for the three lime treatments and at the three periods studied. The areas with relative high or low macronutrient concentrations within each field were not stable throughout the rice growth period. Seasonality in the spatial distribution of macronutrients may be of agronomic value for site specific management.

1967 ◽  
Vol 39 (3) ◽  
pp. 148-155
Author(s):  
Erkki Aura

The placement of fertilizer was studied in the field trial on a clay soil in Southern Finland. The placement of fertilizer in the depth of 8 cm gave 28 per cent greater grain yield of spring wheat, and the placement in the depth of 12 cm 26 per cent greater grain yield than the surface dressing. The growth of shoots on the soil receiving placement was much better than on the soil receiving surface dressing. The results of shoot analyses showed that the placement caused a much greater uptake of nutrients than the surface dressing. The uptake of nitrogen was relatively most increased by the placement, somewhat less that of potassium and least that of phosphorus. The ripening of wheat was speeded up by the placement, which probably was due to the better early uptake of nitrogen and to the better uptake of phosphorus by means of the placing. The superiority of the placement to the surface dressing could be explained by the distribution of nutrients in the experimental soil during the dry early part of the growth season. A great deal of fertilizer nitrogen, phosphorus and potassium remained near the surface of the soil receiving surface dressing, and plants were not able to take up nutrients from the dry surface layer. On the contrary, the placed nutrients were deeper, in moister soil and better within the reach of wheat roots. Any movement of ammonium nitrogen was not found by the used methods. Nitrate nitrogen appeared to move to a greater extent particularly in the irrigated plots.


Author(s):  
A. G. Gurin ◽  
S. V. Rezvyakova ◽  
N. Yu. Revin

The study aimed to estimate seasonal dynamics of soil nitrogen, phosphorus and potassium under the influence of sod grasses in a sod-dressing intercropped orchard. The trial was conducted in a Welsey apple 1987-year orchard. Trees were planted at 8×6 m, cultivar seedlings used as rootstock. Red clover and meadow timothy in variant shares were used for interrow sodding. The cereal—legume intercropping was done in 2015, preceded by a 180 kg/ha active substance phosphorus-potassium dressing in reserve. Nitrogen was applied annually prior to growing season at 34.4 kg/ha active substance. Grass biomass in first hay cutting was the highest and comprised 45.3-49.9 % total mass. A total four cuttings dry mass was 3.36-7.10 t/ha depending on scheme. The maximum biomass was registered for the schemes with red clover and meadow timothy at ratios 1:1 and 7:3 (6.52 and 7.10 t/ha). In the growing period, grass depleted soil for 111.1—219.9 kg/ha nitrogen, 21.5-42.7 kg/ha phosphorus and 209.3—380.8 kg/ha potassium. Such consumptions suggest a serious competition for soil nutrients between grass vegetation and fruit trees. The available phosphorus and potassium content was independent of interrow dressing schemes. Inter-scheme differences did not exceed experimental bias due to presowing phosphorus and potassium application in reserve before trial. By first cutting, the nitrate nitrogen soil content in sodding schemes was 1.5-2-fold less vs. bare fallow, i.e. more nitrogen is used by vegetating grass, and its available forms recover slower than being consumed.


2005 ◽  
Vol 15 (2) ◽  
pp. 332-335 ◽  
Author(s):  
Timothy K. Broschat

Five-gram (0.18 oz) samples of two controlled-release fertilizers (CRFs), Osmocote 15N–3.9P–10K (8–9 month) (OSM) and Nutricote 18N–2.6P–6.7K (type 180) (NUTR), were sealed into polypropylene mesh packets that were placed on the surface of a 5 pine bark: 4 sedge peat: 1 sand (by volume) potting substrate (PS), buried 10 cm (3.9 inches) deep below the surface of PS, buried 10 cm below the surface of saturated silica sand (SS), or in a container of deionized water only. Containers with PS received 120 mL (4.1 floz) of deionized water three times per week, but the containers with SS or water only had no drainage and were sealed to prevent evaporation. Samples were removed after 2, 5, or 7 months of incubation at 23 °C (73.4 °F) and fertilizer prills were crushed, extracted with water, and analyzed for ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), phosphorus (P), and potassium (K). Release rates of NO3-N were slightly faster than those of NH4-N and both N ions were released from both products much more rapidly than P or K. After 7 months, OSM prills retained only 8% of their NO3-N, 11% of their NH4-N, 25% of their K, and 46% of their P when averaged across all treatments. Nutricote prills retained 21% of their NO3-N, 28% of their NH4-N, 51% of their K, and 65% of their P. Release of all nutrients from both fertilizers was slowest when applied to the surface of PS, while both products released most rapidly in water only. Release rates in water only exceeded those in SS, presumably due to lower rates of mass flow in SS.


2008 ◽  
Vol 18 (4) ◽  
pp. 671-677 ◽  
Author(s):  
Timothy K. Broschat

In two experiments, pasteurized poultry litter (PPL) was evaluated as a potential substitute for controlled-release fertilizers in the production of container-grown downy jasmine (Jasminum multiflorum), chinese hibiscus (Hibiscus rosa-sinensis), and areca palm (Dypsis lutescens). Downy jasmine and chinese hibiscus generally grew better when provided with PPL as a micronutrient source than with no micronutrients or with an inorganic micronutrient blend (MN). However, areca palm grew poorly with PPL as a fertilizer supplement compared with MN-fertilized areca palm. PPL provided high levels of ammonium nitrogen, phosphorus, and potassium during the first few weeks, but soil solution levels of these elements dropped off rapidly in subsequent weeks. The large amount of phosphorus leached from the containers fertilized with PPL is an environmental concern.


2010 ◽  
Vol 36 (4) ◽  
pp. 655-664 ◽  
Author(s):  
Yong-Jian SUN ◽  
Yuan-Yuan SUN ◽  
Xu-Yi LI ◽  
Rong-Ping ZHANG ◽  
Xiang GUO ◽  
...  

2016 ◽  
Vol 30 (4) ◽  
pp. 401-414 ◽  
Author(s):  
Ewa Błońska ◽  
Kazimierz Januszek ◽  
Stanisław Małek ◽  
Tomasz Wanic

AbstractThe experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.


Sign in / Sign up

Export Citation Format

Share Document