scholarly journals Synthesis, Characterization, and Thermal Kinetics of Mixed Gadolinium: Calcium Heptamolybdate System

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
R. K. Koul ◽  
Shivani Suri ◽  
Vishal Singh ◽  
K. K. Bamzai

Synthesis of mixed gadolinium calcium heptamolybdate (GdCaHM) system in silica gel medium using single gel single tube technique has been successfully achieved. The grown crystal exhibits various morphologies, which includes spherulites, multifaceted, and square platelets. The nature of the grown material was established by X-ray diffraction (XRD) studies. Fourier transform infrared spectroscopy (FTIR) study signifies the presence of heptamolybdate (Mo7O24) and water symmetry structure, whereas energy dispersive X-ray analysis (EDAX) establishes the stoichiometric of the grown crystal as GdCaMo7O24·8H2O. The thermal behaviour was studied using the thermoanalytical techniques, which include thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). Results obtained on the application of TG based models, namely, Horowitz-Metzger, Coats-Redfern, and Piloyan-Novikova, suggest the contracting cylindrical model as the relevant model for the thermal decomposition of the material. The kinetic parameters, namely, the order of reaction (n), activation energy (Ea), frequency factor (Z), and entropy (ΔS*), were also calculated using these three models.

2020 ◽  
Vol 869 ◽  
pp. 273-279
Author(s):  
Marina A. Gorbunova ◽  
Denis V. Anokhin ◽  
Valentina A. Lesnichaya ◽  
Alexander A. Grishchuk ◽  
Elmira R. Badamshina

A synthesis of new di-and triblock polyurethane thermoplastic copolymers containing different mass ratio of two crystallizing blocks - poly (1,4-butylene glycol) adipate and poly-ε-caprolactone diols was developed. Using combination of danamometric analysis, IR-spectroscopy, differential scanning calorimetry and X-ray diffraction, the effect of the soft block composition and crystallization conditions on crystal structure and thermal behavior of the obtained polymers have been studied. For the triblock copolymers we have shown a possibility of control the kinetics of material hardening and final mechanical characteristics due to the mutual influence of polydiols during crystallization. In the result, the second crystallizing component allows to control amount, structure and quality of crystalline domains in polyurethanes by variation of crystallization conditions.


2014 ◽  
Vol 32 (3) ◽  
pp. 385-390
Author(s):  
Aysel Kantürk Figen ◽  
Bilge Coşkuner ◽  
Sabriye Pişkin

AbstractIn the present study, hydrogen desorption properties of magnesium hydride (MgH2) synthesized from modified waste magnesium chips (WMC) were investigated. MgH2 was synthesized by hydrogenation of modified waste magnesium at 320 °C for 90 min under a pressure of 6 × 106 Pa. The modified waste magnesium was prepared by mixing waste magnesium with tetrahydrofuran (THF) and NaCl additions, applying mechanical milling. Next, it was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques in order to characterize its structural properties. Hydrogen desorption properties were determined by differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates (5, 10, and 15 °C/min). Doyle and Kissenger non-isothermal kinetic models were applied to calculate energy (Ea) values, which were found equal to 254.68 kJ/mol and 255.88 kJ/mol, respectively.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. T. Clavaguera-Mora ◽  
J. Zhu ◽  
M. Meyer ◽  
L. Mendoza-Zelis ◽  
F. H. Sanchez ◽  
...  

ABSTRACTThe evolution of the B2-AlFe phase during mechanical grinding in Ar has been examined as a function of milling time by X-Ray diffraction, transmission Mössbauer spectroscopy and differential scanning calorimetry. Short and long range disorder was observed to increase with the mechanical treatment up to the attainment of a steady state. The evolution of the long range order parameter and of the local atomic configurations at Fe sites were analyzed in terms of possible mechanisms for milling induced disordering. The kinetics of the thermal reordering was studied under continuous heating and isothermal calorimetrie regimes. Modeling of the reordering processes by diffusion controlled growth of pre-existing ordered grains is presented as well as the estimated values of both the enthalpy and the activation energy of the reordering process. The results are consistent with a non uniform distribution of disorder throughout the sample and will be compared with preceding information on related systems.


2011 ◽  
Vol 172-174 ◽  
pp. 646-651 ◽  
Author(s):  
Gamra Tellouche ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Ivan Blum

The phase formation sequence of Ni silicide for different thicknesses is studied by in situ X ray diffraction and differential scanning calorimetry measurements. The formation of a transient phase is observed during the formation of δ-Ni2Si; transient phases grow and disappear during the growth of another phase. A possible mechanism is proposed for the transient phase formation and consumption. It is applied to the growth and consumption of θ-Ni2Si. A good accordance is found between the proposed model and in situ measurement of the kinetics of phase formation obtained by x-ray diffraction and differential scanning calorimetry for higher thickness.


1999 ◽  
Vol 14 (4) ◽  
pp. 1570-1575 ◽  
Author(s):  
G. Ennas ◽  
G. Marongiu ◽  
A. Musinu ◽  
A. Falqui ◽  
P. Ballirano ◽  
...  

Homogeneous maghemite (γ–Fe2O3) nanoparticles with an average crystal size around 5 nm were synthesized by successive hydrolysis, oxidation, and dehydration of tetrapyridino-ferrous chloride. Morphological, thermal, and structural properties were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD) techniques. Rietveld refinement indicated a cubic cell. The superstructure reflections, related to the ordering of cation lattice vacancies, were not detected in the diffraction pattern. Kinetics of the solid-state phase transition of nanocrystalline maghemite to hematite (α–Fe2O3), investigated by energy dispersive x-ray diffraction (EDXRD), indicates that direct transformation from nanocrystalline maghemite to microcrystalline hematite takes place during isothermal treatment at 385 °C. This temperature is lower than that observed both for microcrystalline maghemite and for nanocrystalline maghemite supported on silica.


2007 ◽  
Vol 336-338 ◽  
pp. 2340-2343 ◽  
Author(s):  
Song He Meng ◽  
Xing Hong Zhang ◽  
Wei Feng Zhang

The reaction process and kinetics of Al-TiO2-C-Ti-Fe system were investigated by differential scanning calorimetry (DSC) analysis, X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). In order to obtain the information of reaction process for complicated system, the reaction characteristics of Al-TiO2, Al-TiO2-C and Al-TiO2-C-Ti systems are explored firstly. The results show that the reaction process varies with temperature in Al-TiO2-C-Ti-Fe system. At the lower temperature, the dominating reaction in Al-TiO2-C-Ti-Fe system is that between Al and Ti, Al and Fe, and so TiAlx, FeAlx, and Ti2Fe intermetallic compounds form. With the temperature increasing, the intermetallic compounds are decomposed. Then the decomposed Ti and Al react with C and TiO2 respectively and the stable TiC, Al2O3 and Fe three phases form in the final product.


Author(s):  
Nidhi Tyagi ◽  
Nidhi Sinha ◽  
Harsh Yadav ◽  
Binay Kumar

L-Histidinium dihydrogen arsenate orthoarsenic acid (LHAS) crystals were grown by the slow evaporation method. Single-crystal X-ray diffraction confirms monoclinic structure. The growth rates of various planes of LHAS crystals were estimated by morphological study. Hirshfeld surface and fingerprint plots were analyzed to investigate the intermolecular interactions at 0.002 a.u. present in the crystal structure. The functional groups and phase behavior of the compound are studied by FTIR spectroscopy and differential scanning calorimetry (DSC). A ferroelectric to paraelectric phase transition at 307 K was observed in dielectric studies. The piezoelectric charge coefficients of the grown crystal were found to be 2 pC/N. The values of coercive field (Ec), remnant polarization (Pr) and spontaneous polarization (Ps) in the hysteresis loop are found to be 5.236 kV cm−1, 0.654 µC cm−2and 2.841 µC cm−2, respectively. Piezoelectricity and ferroelectricity are reported for the first time in LHAS crystals. The mechanical strength was confirmed from microhardness study and void volume. Due to the low value of the dielectric constant, and good piezoelectric and ferroelectric properties, LHAS crystals can be used in microelectronics, sensors and advanced electronic devices.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4828
Author(s):  
Isabel Llamas Jansa ◽  
Oliver Friedrichs ◽  
Maximilian Fichtner ◽  
Elisa Gil Bardají ◽  
Andreas Züttel ◽  
...  

The changes introduced by both ball milling and the addition of small amounts of TiF3 in the kinetics of the hydrogen desorption of three different Ca(BH4)2 polymorphs (α, β and γ) have been systematically investigated. The samples with different polymorphic contents, before and after the addition of TiF3, were characterized by powder X-ray diffraction and vibrational spectroscopy. The hydrogen desorption reaction pathways were monitored by differential scanning calorimetry. The hydrogen desorption of Ca(BH4)2 depends strongly on the amount of coexistent α, β and γ polymorphs as well as additional ball milling and added TiF3 to the sample. The addition of TiF3 increased the hydrogen desorption rate without significant dissociation of the fluoride. The combination of an α-Ca(BH4)2 rich sample with 10 mol% of TiF3 and 8 h of milling led to up to 27 °C decrease of the hydrogen desorption peak temperature.


Author(s):  
Valery A. Postnikov ◽  
Nataliya I. Sorokina ◽  
Artem A. Kulishov ◽  
Maria S. Lyasnikova ◽  
Vadim V. Grebenev ◽  
...  

The synthesis, growth from solutions and structure of crystals of a new linear thiophene–phenylene co-oligomer with a central benzothiadiazole fragment with a conjugated core, (TMS-2T-Ph)2-BTD, are presented. Single-crystal samples in the form of needles with a length of up to 7 mm were grown and their crystal structure was determined at 85 K and 293 K using single-crystal X-ray diffraction. The conformational differences between the crystal structures are insignificant. The parameters of melting and liquid crystalline phase transitions of (TMS-2T-Ph)2-BTD were established using differential scanning calorimetry and the thermal stability of the crystals was investigated using thermogravimetric analysis. The optical absorption and photoluminescence spectra of the solutions and crystals of (TMS-2T-Ph)2-BTD were obtained, and the kinetics of their photodegradation under the action of UV radiation were studied.


Sign in / Sign up

Export Citation Format

Share Document