scholarly journals Analysis of the Gyroscopic Stability of the Wheelset

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Dong ◽  
Jing Zeng ◽  
Liang Wu ◽  
Huanyun Dai

The wheelset of the railway vehicle is a rotor which itself has gyroscopic effect. Nowadays, the rolling stock has entered the era of high speed, and the wheel rotates faster than in the past. The influence of gyroscopic effect on stability is little understood. Metelitsyn’s inequality theorem for asymptotic stability has some advantages to analyze this problem although this method is sufficient but not necessary condition. Based on its deduction, the extremal eigenvalues criterion and compared with Routh-Hurwitz criterion, both are applied to solve the critical value of speed. Further, according to the instability criterion, gyroscopic contributory ratio is derived to study how the role the gyroscopic effect plays in stability. Moreover, the effect of gyroscopic matrix or gyroscopic terms pitch rotor inertia Iy on stability coefficient is investigated. The results show that Iy is a key factor to wheelset gyroscopic stability. The gyroscopic effect becomes significant, and the stability increases with increasing Iy. The results also indicate that the critical value of speed solved by Metelitsyn theorem is more conservative than the one it solved by Hurwitz criterion, which proves that Metelitsyn inequality theorem for asymptotic stability is a sufficient but not necessary condition in the way of attaining the numerical simulation result. Finally, the test for the influence of gyroscopic effect on stability needs to be further studied.

2021 ◽  
Vol 11 (12) ◽  
pp. 5406
Author(s):  
Fei Yin ◽  
Xia Ye ◽  
Hongbing Yao ◽  
Pengyu Wei ◽  
Xumei Wang ◽  
...  

In order to study the spallation phenomenon of titanium alloy under the shock of nanosecond laser, the Neodymium-Yttrium-Aluminum Garnet laser was used to carry out laser shock experiments on the surface of titanium alloy. By observing and measuring the surface morphology of the target material, the forming factors and the changes of the surface morphology under different parameter settings, the forming criteria of the titanium alloy were obtained. The results show that under the single variable method, the change of laser energy can affect the target shape variable, and there is a positive correlation between them. When the thickness was greater than or equal to 0.08 mm, no obvious cracks were found in the targets. Moreover, the number of impact times was the key factor for the target deformation; with the growth of impact times, the target deformation gradually became larger until the crack appeared. The larger the diameter of the spot, the more likely the target was to undergo plastic deformation. The surface of titanium alloy with a thickness of 0.08 mm appeared to rebound under specific laser shock condition. The changes in the back of the target material were observed in real time through a high-speed camera, and the plasma induced by the laser was observed in the process. This study is based on the results of previous studies to obtain the titanium alloy forming criteria, which provides a basis for the setting of laser parameters and the thickness of the target when the nanosecond laser impacts the Ti-6AL-4V target.


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3609
Author(s):  
Mykola Sysyn ◽  
Michal Przybylowicz ◽  
Olga Nabochenko ◽  
Lei Kou

The ballasted track superstructure is characterized by a relative quick deterioration of track geometry due to ballast settlements and the accumulation of sleeper voids. The track zones with the sleeper voids differ from the geometrical irregularities with increased dynamic loading, high vibration, and unfavorable ballast-bed and sleeper contact conditions. This causes the accelerated growth of the inhomogeneous settlements, resulting in maintenance-expensive local instabilities that influence transportation reliability and availability. The recent identification and evaluation of the sleeper support conditions using track-side and on-board monitoring methods can help planning prevention activities to avoid or delay the development of local instabilities such as ballast breakdown, white spots, subgrade defects, etc. The paper presents theoretical and experimental studies that are directed at the development of the methods for sleeper support identification. The distinctive features of the dynamic behavior in the void zone compared to the equivalent geometrical irregularity are identified by numeric simulation using a three-beam dynamic model, taking into account superstructure and rolling stock dynamic interaction. The spectral features in time domain in scalograms and scattergrams are analyzed. Additionally, the theoretical research enabled to determine the similarities and differences of the dynamic interaction from the viewpoint of track-side and on-board measurements. The method of experimental investigation is presented by multipoint track-side measurements of rail-dynamic displacements using high-speed video records and digital imaging correlation (DIC) methods. The method is used to collect the statistical information from different-extent voided zones and the corresponding reference zones without voids. The applied machine learning methods enable the exact recent void identification using the wavelet scattering feature extraction from track-side measurements. A case study of the method application for an on-board measurement shows the moderate results of the recent void identification as well as the potential ways of its improvement.


2006 ◽  
Vol 321-323 ◽  
pp. 1593-1596 ◽  
Author(s):  
Chan Kyoung Park ◽  
Ki Whan Kim ◽  
Jin Yong Mok ◽  
Young Guk Kim ◽  
Seog Won Kim

The Korean High Speed Train (KHST) has been tested on the Kyongbu high speed line and the Honam conventional line since 2002. A data acquisition system was developed to test and prove the dynamic performance of the KHST, and the system has been found to be very efficient in acquiring multi-channel data from accelerometers located all over the train. Also presented in this paper is an analysis procedure which is simple and efficient in analyzing the acceleration data acquired during the on-line test of the KHST. The understanding of system vibration mode for a railway vehicle is essential to evaluate the characteristics of a dynamic system and to diagnose the dynamic problems of the vehicle system during tests and operations. Methods based on homogeneous linear systems are not realistic because real systems have nonlinear characteristics and are strongly dependent on environmental conditions. In this paper an efficient method of vibration analysis has been proposed and applied for the KHST to evaluate its vibration mode characteristics. The results show that this method is suitable to estimate the system vibration modes of the KHST.


Author(s):  
Sono Bhardawaj ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma

Increasing demand for railway vehicle speed has pushed the railway track designers to develop high-quality track. An important measure of track quality is the character of the transition curve track connecting different intersecting straight tracks. A good transition curve track must be able to negotiate the intermittent stresses and dynamic effects caused by changes in lateral acceleration at high speed. This paper presents the constructional methods for planning transition curves considering the dynamics of movement. These methods consider the non-compensated lateral acceleration, deviation in lateral acceleration and its higher time derivatives. This paper discusses the laying methods of circular, vertical and transition curves. Key aspects in laying a curved track e.g. widening of gauge on curves are discussed in this paper. This paper also suggests a transition curve which is effective not only from a dynamic point of view considering lateral acceleration and its higher time derivative but also consider the geometric conditions along with the required deflection angle.


2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tim Chen ◽  
N. Kapronand ◽  
C.Y. Hsieh ◽  
J. Cy Chen

Purpose To guarantee the asymptotic stability of discrete-time nonlinear systems, this paper aims to propose an evolved bat algorithm fuzzy neural network (NN) controller algorithm. Design/methodology/approach In evolved fuzzy NN modeling, the NN model and linear differential inclusion representation are established for the arbitrary nonlinear dynamics. The control problems of the Fisher equation and a temperature cooling fin for high-speed aerospace vehicles will be described and demonstrated. The signal auxiliary controlled system is represented for the nonlinear parabolic partial differential equation (PDE) systems and the criterion of stability is derived via the Lyapunov function in terms of linear matrix inequalities. Findings This representation is constructed by sector nonlinearity, which converts the nonlinear model to a multiple rule base for the linear model and a new sufficient condition to guarantee the asymptotic stability. Originality/value This study also injects high frequency as an auxiliary and the control performance to stabilize the nonlinear high-speed aerospace vehicle system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chen Wang ◽  
Shihui Luo ◽  
Ziqiang Xu ◽  
Chang Gao ◽  
Weihua Ma

In order to find out the reason for the bogie frame instability alarm in the high-speed railway vehicle, the influence of wheel tread profile of the unstable vehicle was investigated. By means of wheel-rail contact analysis and dynamics simulation, the effect of tread wear on the bogie frame lateral stability was studied. The result indicates that the concave wear of tread is gradually aggravated with the increase of operation mileage; meanwhile the wheel-rail equivalent conicity also increases. For the rail which has not been grinded for a long time, the wear of gauge corner and wide-worn zone is relatively severe; the matching equivalent conicity is 0.31-0.4 between the worn rail and the concave-worn-tread wheel set. The equivalent conicity between the grinded rail and the concave-worn tread is below 0.25; the equivalent conicities are always below 0.1 between the reprofiled wheel set and various rails. The result of the line test indicates that the lateral acceleration of bogie frame corresponding to the worn wheel-rail can reach 8.5m/s2, and the acceleration after the grinding is reduced below 4.5m/s2. By dynamics simulation, it turns out that the unreasonable wheel-rail matching relationship is the major cause of the bogie frame lateral alarm. With the tread-concave wear being aggravated, the equivalent conicity of wheel-rail matching constantly increases, which leads to the bogie frame lateral instability and then the frame instability alarm.


2018 ◽  
Vol 216 ◽  
pp. 01015
Author(s):  
Darya Provornaya ◽  
Sergey Glushkov ◽  
Leonid Solovyev

The paper considers the issues of vibration isolation of railway bridge units on high-speed lines and seismic protection using dynamic vibration dampers. The purpose of the research is to justify the efficiency of damping the dynamic vibrations of the bridge supports with seismic insulating support parts. The research methodology involves building mathematical models of the systems under consideration and their numerical analysis. The methods of structural mechanics and dynamics of structures were used for solving the assigned tasks. The basic mathematical dependences of the vibration system with two seismic masses were developed. The rolling stock was represented by concentrated forces moving along the span structure. As a result, a new scheme for dynamic damping of vibration of the bridge supports was proposed according to which the span structure used as the dynamic vibration damper has an additional fastening on a rigid abutment.


Sign in / Sign up

Export Citation Format

Share Document