scholarly journals A SLAM Algorithm Based on Adaptive Cubature Kalman Filter

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fei Yu ◽  
Qian Sun ◽  
Chongyang Lv ◽  
Yueyang Ben ◽  
Yanwei Fu

We need to predict mathematical model of the system and a priori knowledge of the noise statistics when traditional simultaneous localization and mapping (SLAM) solutions are used. However, in many practical applications, prior statistics of the noise are unknown or time-varying, which will lead to large estimation errors or even cause divergence. In order to solve the above problem, an innovative cubature Kalman filter-based SLAM (CKF-SLAM) algorithm based on an adaptive cubature Kalman filter (ACKF) was established in this paper. The novel algorithm estimates the statistical parameters of the unknown system noise by introducing the Sage-Husa noise statistic estimator. Combining the advantages of the CKF-SLAM and the adaptive estimator, the new ACKF-SLAM algorithm can reduce the state estimated error significantly and improve the navigation accuracy of the SLAM system effectively. The performance of this new algorithm has been examined through numerical simulations in different scenarios. The results have shown that the position error can be effectively reduced with the new adaptive CKF-SLAM algorithm. Compared with other traditional SLAM methods, the accuracy of the nonlinear SLAM system is significantly improved. It verifies that the proposed ACKF-SLAM algorithm is valid and feasible.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hongjian Wang ◽  
Guixia Fu ◽  
Juan Li ◽  
Zheping Yan ◽  
Xinqian Bian

This work proposes an improved unscented Kalman filter (UKF)-based simultaneous localization and mapping (SLAM) algorithm based on an adaptive unscented Kalman filter (AUKF) with a noise statistic estimator. The algorithm solves the issue that conventional UKF-SLAM algorithms have declining accuracy, with divergence occurring when the prior noise statistic is unknown and time-varying. The new SLAM algorithm performs an online estimation of the statistical parameters of unknown system noise by introducing a modified Sage-Husa noise statistic estimator. The algorithm also judges whether the filter is divergent and restrains potential filtering divergence using a covariance matching method. This approach reduces state estimation error, effectively improving navigation accuracy of the SLAM system. A line feature extraction is implemented through a Hough transform based on the ranging sonar model. Test results based on unmanned underwater vehicle (UUV) sea trial data indicate that the proposed AUKF-SLAM algorithm is valid and feasible and provides better accuracy than the standard UKF-SLAM system.


2011 ◽  
Vol 08 (01) ◽  
pp. 223-243 ◽  
Author(s):  
RAMAZAN HAVANGI ◽  
MOHAMMAD TESHNEHLAB ◽  
MOHAMMAD ALI NEKOUI

Extended Kalman filter (EKF) has been used as a popular choice to solve simultaneous localization and mapping (SLAM) problem. However, SLAM algorithm based on EKF-SLAM has two serious drawbacks, namely the linear approximation of nonlinear functions and the calculation of Jacobin matrices. For solving these problems, SLAM algorithm based on unscented Kalman filter (UKF-SLAM) has been recently proposed. However, the performance of the UKF-SLAM and thus the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices respectively denoted by Qk and Rk. Imprecise knowledge of these statistics can cause significant degradation in performance. This article proposes the development of an adaptive neuro-fuzzy UKF (ANFUKF) for SLAM. The Adaptive neuro-fuzzy attempts to estimate the elements of Rk matrix in the UKF-SLAM algorithm at each sampling instant when measurement updating step is carried out. The adaptive neuro-fuzzy inference system (ANFIS) supervises the performance of the UKF-SLAM with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (GD) to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much as possible. The simulation results show the effectiveness of the proposed algorithm.


Robotica ◽  
2020 ◽  
pp. 1-21
Author(s):  
Ramazan Havangi

SUMMARY An improved FastSLAM based on the robust square-root cubature Kalman filter (RSRCKF) with partial genetic resampling is proposed in this paper. In the proposed method, RSRCKF is used to design the proposal distribution of FastSLAM and to estimate environment landmarks. The proposed method does not require a priori knowledge of the noise statistics. In addition, to increase diversity, it uses the genetic operators-based strategy to further improve the particle diversity. In fact, a partial genetic resampling operation is carried out to maintain the diversity of particles. The proposed method is compared with other methods via simulation and experimental data. It can be seen from the results that the proposed method provides significantly more accurate and robust estimation results compared with other methods even with fewer particles and unknown a priori. In addition, the consistency of the proposed method is better than that of other methods.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


2019 ◽  
Vol 11 (23) ◽  
pp. 2827 ◽  
Author(s):  
Narcís Palomeras ◽  
Marc Carreras ◽  
Juan Andrade-Cetto

Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.


Author(s):  
N. Botteghi ◽  
B. Sirmacek ◽  
R. Schulte ◽  
M. Poel ◽  
C. Brune

Abstract. In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different indoor environments.


2021 ◽  
Vol 33 (8) ◽  
pp. 2591
Author(s):  
Chaoyang Chen ◽  
Qi He ◽  
Qiubo Ye ◽  
Guangsong Yang ◽  
Cheng-Fu Yang

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhen Zhou ◽  
Dongqing Wang ◽  
Boyang Xu

Purpose The purpose of this paper is to explore a multi-innovation with forgetting factor-based EKF-SLAM (FMI-EKF-SLAM) algorithm to solve the error increasing problem, caused by the Extended Kalman filtering (EKF) violating the local linear assumption in simultaneous localization and mapping (SLAM) for mobile robots because of strong nonlinearity. Design/methodology/approach A multi-innovation with forgetting factor-based EKF-SLAM (FMI-EKF-SLAM) algorithm is investigated. At each filtering step, the FMI-EKF-SLAM algorithm expands the single innovation at current step to an extended multi-innovation containing current and previous steps and introduces the forgetting factor to reduce the effect of old innovations. Findings The simulation results show that the explored FMI-EKF-SLAM method reduces the state estimation errors, obtains the ideal filtering effect and achieves higher accuracy in positioning and mapping. Originality/value The method proposed in this paper improves the positioning accuracy of SLAM and improves the EKF, so that the EKF has higher accuracy and wider application range.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yingzhong Tian ◽  
Heru Suwoyo ◽  
Wenbin Wang ◽  
Long Li

The probability-based filtering method has been extensively used for solving the simultaneous localization and mapping (SLAM) problem. Generally, the standard filter utilizes the system model and prior stochastic information to approximate the posterior state. However, in the real-time situation, the noise statistics properties are relatively unknown, and the system is inaccurately modeled. Thus the filter divergence might occur in the integration system. Moreover, the expected accuracy might be challenging to be reached due to the absence of the responsive time-varying of both the process and measurement noise statistic which naturally can enlarge the uncertainty in the continuous system. Consequently, the traditional strategy needs to be improved aiming to provide an ability to estimate those properties. In order to accomplish this issue, the new adaptive filter is proposed in this paper, termed as an adaptive smooth variable structure filter (ASVSF). Sequentially, the improved SVSF is derived and implemented; the process and measurement noise statistics are estimated by utilizing the maximum a posteriori (MAP) creation and the weighted exponent concept, and the covariance correction step is added based on the divergence suppression concept. In this paper the ASVSF is applied to overcome the SLAM problem of an autonomous mobile robot; henceforth it is abbreviated as an ASVSF-SLAM algorithm. It is simulated and compared to the classical algorithm. The simulation results demonstrated that the proposed algorithm has better performance, stability, and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document