scholarly journals Performance Analysis of a Six-Port Receiver in a WCDMA Communication System including a Multipath Fading Channel

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. O. Olopade ◽  
M. Helaoui

Third generation communication systems require receivers with wide bandwidth of operation to support high transmission rates and are also reconfigurable to support various communication standards with different frequency bands. An ideal software defined radio (SDR) will be the absolute answer to this requirement but it is not achievable with the current level of technology. This paper proposes the use of a six-port receiver (SPR) front-end (FE) in a WCDMA communication system. A WCDMA end-to-end physical layer MATLAB demo which includes a multipath channel distortion block is used to determine the viability of the six-port based receiver. The WCDMA signal after passing through a multipath channel is received using a constructed SPR FE. The baseband signal is then calibrated and corrected in MATLAB. The six-port receiver performance is measured in terms of bit error rate (BER). The signal-to-noise ratio (SNR) of the transmittedIQdata is varied and the BER profile of the communication system is plotted. The effect of the multipath fading on the receiver performance and the accuracy of the calibration algorithm are obtained by comparing two different measured BER curves for different calibration techniques to the simulated BER curve of an ideal receiver.

2011 ◽  
Vol 403-408 ◽  
pp. 1568-1571
Author(s):  
Xiao Yan Zhao

Synchronization is very important to orthogonal frequency division multiplexing (OFDM) systems. Taking aim at the problem that the timing inaccuracy of the S&C method and the indistinct peak of the timing metric produced by Park method under the low signal-to-noise ratio (SNR) and fading channel, a new symbol synchronization algorithm based on the training symbol is proposed in this paper. The new algorithm exploits the training symbol proposed by S&C to correlate the received signal with the known training symbol again at the receiving end to identify the start point of the OFDM symbol. The result of the simulation shows that the proposed method’s timing metric is of the impulse-shaped peak under the condition of the lower SNR and multipath fading channel, and has smaller timing errors compared with the conventional method in terms of mean-square error (MSE) of the timing estimator.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guan Qing yang ◽  
Wu Shuang ◽  
He Ya-Ru

A multiuser detection (MUD) algorithm based on deep learning network is proposed for the satellite mobile communication system. Due to relative motion between the satellite and users, multiple access interference (MUI) introduced by multipath fading channel reduces system performance. The proposed MUD algorithm based on deep learning network firstly establishes the CINR optimal loss function according to the multiuser access mode and then obtains the best multiuser detection weight through the steepest gradient iteration. Multilayer nonlinear learning obtains interference cancellation sharing weights to achieve maximum signal-to-noise ratio through gradient iteration, which is superior than the traditional serial interference cancellation algorithm and parallel interference cancellation algorithm. Then, the weights with multiuser detection through multilayer network forward learning iteration are obtained with traditional multiuser detecting quality characteristics. The proposed multiuser access detection based on deep learning network algorithm improves the MUD accuracy and reduces the number of traditional multiusers. The performance of the satellite multifading uplink system shows that the proposed deep learning network can provide high precision and better iteration times.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guan Qing Yang

A deep learning architecture based on Extensible Neural Networks is proposed for modulation classification in multipath fading channel. Expanded Neural Networks (ENN) are established based on energy natural logarithm model. The model is set up using hidden layers. Modulation classification based on ENN is implemented through the amplitude, phase, and frequency hidden network, respectively. In order to improve Probability of Correct classification (PCC), one or more communication signal features are extracted using hidden networks. Through theoretical proof, ENN learning network is demonstrated to be effective in improving PCC using amplitude, phase, and the frequency weight subnetwork, respectively. Compared with the traditional algorithms, the simulation results show that the proposed ENN has higher PCC than traditional algorithm for modulation classification within the same training sequence and Signal to Noise Ratio (SNR).


2005 ◽  
Vol 15 (12) ◽  
pp. 4027-4033 ◽  
Author(s):  
YONGXIANG XIA ◽  
CHI K. TSE ◽  
FRANCIS C. M. LAU ◽  
GÉZA KOLUMBÁN

Multipath performance is an important consideration for chaos-based communication systems. In this letter, the performance of the FM-DCSK communication system over multipath fading channels is evaluated by computer simulations. Both Rayleigh fading and Ricean fading are considered, and the low-pass equivalent model of the FM-DCSK system is used in the simulation. Based on this model, we analyze the bit error performance of the system and the effects of system parameters on the bit-error performance.


Author(s):  
KATHIYAIAH THIYAGU ◽  
T. H. OH

The demand for high data rate transmission is ever increasing every day. Multi-carrier code division multiple access (MC-CDMA) system is considered as the forerunner and advancement in the mobile communication system. In this paper, two types of JPEG2000 lossily-compressed test images are transmitted through an MC-CDMA channel in low SNR (as low as 4 dB) environment and their quality are evaluated objectively by using peak signal-to-noise ratio (PSNR) and root mean square error (RMSE). The test images are all compressed from ratio of 10 : 1 up to 70 : 1 and the system involves multi-user image transmission in near real-time low SNR (±5 dB). It is found that JPEG2000 image compression technique that applies wavelet transform performed quite well in the low SNR multipath fading channel — as low as 4 dB, and this looks promising for future applications.


Author(s):  
Istikmal Istikmal ◽  
Adit Kurniawan ◽  
Hendrawan Hendrawan

Routing protocol and congestion control in Transmission Control Protocol (TCP) have important roles in wireless mobile network performance. In wireless communication, the stability of the path and successful data transmission will be influenced by the channel condition. This channel condition constraints come from path loss and the multipath channel fading. With these constraints, the algorithm in the routing protocol and congestion control is confronted with the uncertainty of connection quality and probability of successful packet transmission, respectively. It is important to investigate the reliability and robustness of routing protocol and congestion control algorithms in dealing with such situation.  In this paper, we develop a detailed approach and analytical throughput performance with a cross layer scheme (CLS) between routing and congestion control mechanism based on signal to noise ratio (SNR) in Rician and Rayleigh as multipath fading channel. We proposed joint routing and congestion control TCP with a cross layer scheme model based on SNR (RTCP-SNR). We compare the performance of RTCP-SNR with conventional routing-TCP and routing-TCP that used CLS with routing aware (RTCP-RA) model. The analyses and the simulation results showed that RTCP-SNR in a multipath channel outperforms conventional routing-TCP and RTCP-RA.


Author(s):  
Ghasan Ali Hussain ◽  
Lukman Audah

<span>Due to its large peak to average power ratio (PAPR) and high out of band emission (OOBE), OFDM doesn't meet the requirements of 5G services. Additionally, it supports only one type of waveform parameters in entire bandwidth. In contrast, f-OFDM is dividing the system's bandwidth into a number of subbands to support several waveform parameters based on various service scenarios. So, Filtered-OFDM (f-OFDM) is considered as a modern enabler of the flexible waveform to overcome the OFDM drawbacks while remaining its advantages as well as, to encounter the new challenges that faced 5G. Nonetheless, there is a trade-off among OOBE, PAPR and SNR performance. Meanwhile, channel coding technology is one of the most important issue in physical layer which is playing an essential role in order to achieve the reliability and latency. So, BCH code has been suggested in this paper for f-OFDM system to achieve the reliability of transmission information and thus improving BER performance over multipath fading channel. Whilst, BCH-LTE system is introduced as a baseline in this paper that using for comparison purpose with proposed system. Simulation results showed that the proposed BCH-f-OFDM system was significantly better than BCH-LTE system in terms of decreasing OOBE and achieving improving in BER performance. Although, PAPR levels was stilling high in proposed system due to the trade-off among OOBE, PAPR and SNR performance. However, the proposed system is considered a promising candidate to meet the requirements of 5G services because of its ability to solve two important issues in between three trade-offs'.</span>


Author(s):  
Guodong Tian ◽  
Rongfang Song

AbstractIntelligent reflecting surface (IRS) has emerged as an innovative and disruptive solution to boost the spectral and energy efficiency and enlarge the coverage of wireless communication systems. However, the existing literature on IRS mainly concentrates on wireless communication systems assisted by single or multiple distributed IRSs, which are not always effective. In view of this issue, this paper considers a special double-IRS-assisted wireless communication system, where IRS1 and IRS2 are deployed near the base station (BS) and the user, respectively, and the transmitted signals reach the user via the cascaded BS-IRS1-IRS2-user channel only. We cooperatively optimize transmit and passive beamforming on the two IRSs based on the particle swarm optimization (PSO) algorithm to maximize the received signal power. Simulation indicates that despite no direct line-of-sight (LoS) path from the BS to the user, an excellent signal-to-noise ratio (SNR) is available at the receiver with the aid of two IRSs, which demonstrates that it is feasible to assist communication by double reflection links composed of two IRSs. Additionally, we unexpectedly find that when the positions of the two IRSs are fixed, by exchanging the positions of the BS and the user, the obtainable SNRs are similar.


Sign in / Sign up

Export Citation Format

Share Document