scholarly journals CNB-001 a Novel Curcumin Derivative, Guards Dopamine Neurons in MPTP Model of Parkinson’s Disease

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Richard L. Jayaraj ◽  
Namasivayam Elangovan ◽  
Krishnan Manigandan ◽  
Sonu Singh ◽  
Shubha Shukla

Copious experimental and postmortem studies have shown that oxidative stress mediated degeneration of nigrostriatal dopaminergic neurons underlies Parkinson’s disease (PD) pathology. CNB-001, a novel pyrazole derivative of curcumin, has recently been reported to possess various neuroprotective properties. This study was designed to investigate the neuroprotective mechanism of CNB-001 in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Administration of MPTP (30 mg/kg for four consecutive days) exacerbated oxidative stress and motor impairment and reduced tyrosine hydroxylase (TH), dopamine transporter, and vesicular monoamine transporter 2 (VMAT2) expressions. Moreover, MPTP induced ultrastructural changes such as distorted cristae and mitochondrial enlargement in substantia nigra and striatum region. Pretreatment with CNB-001 (24 mg/kg) not only ameliorated behavioral anomalies but also synergistically enhanced monoamine transporter expressions and cosseted mitochondria by virtue of its antioxidant action. These findings support the neuroprotective property of CNB-001 which may have strong therapeutic potential for treatment of PD.

2018 ◽  
Vol 19 (11) ◽  
pp. 3543 ◽  
Author(s):  
Jeong Baek ◽  
Jae Jeong ◽  
Kyoung Kim ◽  
So-Yoon Won ◽  
Young Chung ◽  
...  

We demonstrated that capsaicin (CAP), an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), inhibits microglia activation and microglia-derived oxidative stress in the substantia nigra (SN) of MPP+-lesioned rat. However, the detailed mechanisms how microglia-derived oxidative stress is regulated by CAP remain to be determined. Here we report that ciliary neurotrophic factor (CNTF) endogenously produced by CAP-activated astrocytes through TRPV1, but not microglia, inhibits microglial activation and microglia-derived oxidative stress, as assessed by OX-6 and OX-42 immunostaining and hydroethidine staining, respectively, resulting in neuroprotection. The significant increase in levels of CNTF receptor alpha (CNTFRα) expression was evident on microglia in the MPP+-lesioned rat SN and the observed beneficial effects of CNTF was abolished by treatment with CNTF receptor neutralizing antibody. It is therefore likely that CNTF can exert its effect via CNTFRα on microglia, which rescues dopamine neurons in the SN of MPP+-lesioned rats and ameliorates amphetamine-induced rotations. Immunohistochemical analysis revealed also a significantly increased expression of CNTFRα on microglia in the SN from human Parkinson’s disease patients compared with age-matched controls, indicating that these findings may have relevance to the disease. These data suggest that CNTF originated from TRPV1 activated astrocytes may be beneficial to treat neurodegenerative disease associated with neuro-inflammation such as Parkinson’s disease.


2021 ◽  
Author(s):  
Min-Ho Nam ◽  
Jong-Hyun Park ◽  
Hyo Jung Song ◽  
Ji Won Choi ◽  
Siwon Kim ◽  
...  

AbstractMonoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson’s disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%). In addition, KDS2010 demonstrated significant neuroprotective and anti-neuroinflammatory efficacy against nigrostriatal pathway destruction in the mouse MPTP model of parkinsonism. Treatment with KDS2010 also alleviated parkinsonian motor dysfunction in 6-hydroxydopamine-induced and A53T mutant α-synuclein overexpression rat models of PD. Moreover, KDS2010 showed virtually no toxicity or side effects in non-human primates. KDS2010 could be a next-generation therapeutic candidate for PD.


2019 ◽  
Vol 20 (7) ◽  
pp. 1538 ◽  
Author(s):  
Hayate Javed ◽  
Sheikh Azimullah ◽  
MF Meeran ◽  
Suraiya Ansari ◽  
Shreesh Ojha

Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.


2012 ◽  
Vol 516 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Zaher Arraf ◽  
Tamar Amit ◽  
Moussa B.H. Youdim ◽  
Raymond Farah

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Kyung In Kim ◽  
Young Cheul Chung ◽  
Byung Kwan Jin

Neuroinflammation is the neuropathological feature of Parkinson’s disease (PD) and causes microglial activation and activated microglia-derived oxidative stress in the PD patients and PD animal models, resulting in neurodegeneration. The present study examined whether norfluoxetine (a metabolite of fluoxetine) could regulate neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD and rescue dopamine neurons. Analysis by tyrosine hydroxylase (TH) immunohistochemistry demonstrated that norfluoxetine prevents degeneration of nigrostriatal dopamine neurons in vivo in MPTP-lesioned mice compared to vehicle-treated MPTP-lesioned control mice. MAC-1 immunostaining and hydroethidine histochemical staining showed that norfluoxetine neuroprotection is accompanied by inhibiting MPTP-induced microglial activation and activated microglia-derived reactive oxygen species production in vivo, respectively. In the separate experiments, treatment with norfluoxetine inhibited NADPH oxidase activation and nitrate production in LPS-treated cortical microglial cultures in vitro. Collectively, these in vivo and in vitro results suggest that norfluoxetine could be employed as a novel therapeutic agent for treating PD, which is associated with neuroinflammation and microglia-derived oxidative stress.


2005 ◽  
Vol 163 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Reena Haobam ◽  
Kizhakke M. Sindhu ◽  
Goutam Chandra ◽  
Kochupurackal P. Mohanakumar

Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2824-2835 ◽  
Author(s):  
Shaletha Holmes ◽  
Meharvan Singh ◽  
Chang Su ◽  
Rebecca L. Cunningham

Parkinson's disease, a progressive neurodegenerative disorder, is associated with oxidative stress and neuroinflammation. These pathological markers can contribute to the loss of dopamine neurons in the midbrain. Interestingly, men have a 2-fold increased incidence for Parkinson's disease than women. Although the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that testosterone, through a putative membrane androgen receptor, can increase oxidative stress–induced neurotoxicity in dopamine neurons. Based on these results, this study examines the role of nuclear factor κ B (NF-κB), cyclooxygenase-2 (COX2), and apoptosis in the deleterious effects of androgens in an oxidative stress environment. We hypothesize, under oxidative stress environment, testosterone via a putative membrane androgen receptor will exacerbate oxidative stress–induced NF-κB/COX2 signaling in N27 dopaminergic neurons, leading to apoptosis. Our data show that testosterone increased the expression of COX2 and apoptosis in dopamine neurons. Inhibiting the NF-κB and COX2 pathway with CAPE and ibuprofen, respectively, blocked testosterone's negative effects on cell viability, indicating that NF-κB/COX2 cascade plays a role in the negative interaction between testosterone and oxidative stress on neuroinflammation. These data further support the role of testosterone mediating the loss of dopamine neurons under oxidative stress conditions, which may be a key mechanism contributing to the increased incidence of Parkinson's disease in men compared with women.


Sign in / Sign up

Export Citation Format

Share Document