scholarly journals Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rubén Sierra-Ávila ◽  
Marissa Pérez-Alvarez ◽  
Gregorio Cadenas-Pliego ◽  
Carlos Alberto Ávila-Orta ◽  
Rebeca Betancourt-Galindo ◽  
...  

The synthesis of copper nanoparticles was studied by wet chemical methods using copper sulfate pentahydrate (CuSO4·5H2O) and nitrogen ligands allylamine (AAm) and polyallylamine (PAAm) as stabilizers. The results suggest that the use of these ligands leads to the exclusive formation of metallic copper nanoparticles (Cu-NPs). The use of partially crosslinked polyallylamine (PAAmc) leads to nanoparticles (NPs) with low yields and high coating content, while linear PAAm leads to NPs with high yields and low coating content. The chemical composition of the particles was determined by XRD and average particle diameters were determined by the Debye-Scherrer equation. TGA analysis provided evidence of the content and thermal stability of the coating on the nanoparticles and PAAm. The morphology, particle size distribution, and presence of PAAm coating were observed through TEM. The use of AAm in the synthesis of NPs could be a good alternative to reduce costs. By using TGA, TEM, and DSC techniques, it was determined that synthesized NPs with AAm presented a coating with similar characteristics to NPs with PAAm, suggesting that AAm underwent polymerization during the synthesis.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rubén Sierra-Ávila ◽  
Marissa Pérez-Alvarez ◽  
Gregorio Cadenas-Pliego ◽  
Víctor Comparán Padilla ◽  
Carlos Ávila-Orta ◽  
...  

Copper nanoparticles (Cu-NPs) with sizes lower than 31 nm were prepared by wet chemical reduction using copper sulfate solution, hydrazine, and mixture of allylamine (AAm) and polyallylamine (PAAm) as stabilizing agents. The use of AAm/PAAm mixture leads to the formation of Cu and CuO nanoparticles. The resulting nanostructures were characterized by XRD, TGA, and TEM. The average particle diameters were determined by the Debye-Scherrer equation. Analysis by TGA, TEM, GS-MS, and1HNMR reveals that synthesized NPs with AAm presented a coating with similar characteristics to NPs with PAAm, suggesting that AAm underwent polymerization during the synthesis. The synthesis of NPs using AAm could be a good alternative to reduce production costs.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2846
Author(s):  
Noemi Jardón-Maximino ◽  
Marissa Pérez-Alvarez ◽  
Gregorio Cadenas-Pliego ◽  
Luis E. Lugo-Uribe ◽  
Christian Cabello-Alvarado ◽  
...  

In this work, we report the synthesis of copper nanoparticles (Cu NPs), employing the chemical reduction method in an aqueous medium. We used copper sulfate pentahydrate (CuSO4·5H2O) as a metallic precursor; polyethylenimine (PEI), allylamine (AAM), and 4-aminobutyric acid (AABT) as stabilizing agents; and hydrated hydrazine as a reducing agent. The characterization of the obtained nanoparticles consisted of X-ray, TEM, FTIR, and TGA analyses. Through these techniques, it was possible to detect the presence of the used stabilizing agents on the surface of the NPs. Finally, a zeta potential analysis was performed to differentiate the stability of the nanoparticles with a different type of stabilizing agent, from which it was determined that the most stable nanoparticles were the Cu NPs synthesized in the presence of the PEI/AAM mixture. The antimicrobial activity of Cu/PEI/AABT toward P. aeruginosa and S. aureus bacteria was high, inhibiting both bacteria with low contact times and copper concentrations of 50–200 ppm. The synthesis method allowed us to obtain Cu NPs free of oxides, stable to oxidation, and with high yields. The newly functionalized Cu NPs are potential candidates for antimicrobial applications.


2018 ◽  
Vol 68 (12) ◽  
pp. 2907-2913 ◽  
Author(s):  
Firuta Goga ◽  
Edit Forizs ◽  
George Borodi ◽  
Gheorghe Tomoaia ◽  
Alexandra Avram ◽  
...  

The goal of this investigation is related to the development of nanostructured biomaterials based on hydroxyapatite (HAP) and multi-doped hydroxyapatites (HAPs), with essential physiological elements, like Mg, Zn, Sr, and Si, for bone repair and regeneration. Nano hydroxyapatites pastes and powders were obtained by wet chemical method using innovative nanotechnology and advanced processing of biomaterials at various temperatures to control the crystallite size and crystallinity degree. The prepared HAPs were analysed by various physical and chemical methods, like SEM, SEM-EDX, AFM, XRD, TG and DSC analysis. The results showed that these biomaterials both in pastes and in powders contained a unique phase, characterized by the HAP structure, which was substantially preserved even at 1000 oC, indicating a high thermal stability of these biomaterials. To enhance their usage, we have prepared HAP and multi-doped HAPs in the form of pastes with controlled humidity (moisture) and powders with controlled crystallinity, which were lyophilized or lyophilized calcined at 300 oC for 1 h. Preliminary biological tests showed that the adhesion and proliferation of human osteoblasts depended on the heat treatment of HAPs used for building the scaffolds. The findings suggest that these biomaterials based on HAPs may have a wide range of medical applications as bone substitute and coatings on metallic implants.


2021 ◽  
Vol 897 (1) ◽  
pp. 012010
Author(s):  
D. Asmat-Campos ◽  
D. Delfin-Narciso ◽  
L. Juárez-Cortijo ◽  
R. Nazario-Naveda

Abstract In the present investigation, the effect of ascorbic acid volume in the synthesis of copper nanoparticles (Cu NPs) mediated by chemical route and their stability over time was evaluated. For the synthesis, copper sulfate pentahydrate CuSO4 (5H2O) was used as a precursor agent and ascorbic acid (AA) as a reducing agent. Cu NPs was characterized by the following techniques: UV-Visible spectrophotometry to evaluate structural changes that are evidenced in the absorbance peak and atomic absorption spectrophotometry to define nanoparticulate concentrations material in the precipitated and supernatant phases generated. On the methodology it was possible to observe a controlled formation based on the increase in the volume of ascorbic acid in the presence of sodium hydroxide, noticing a production of Cu nanostructures with a tendency to oxidation over time. The UV-visible results showed characteristic surface plasmon resonance peaks of metallic copper for the colloid containing 1.2 mL of A.A; as well as a specific copper concentration of 0.14 ppm in the supernatant and 1519.1 ppm in the precipitate. It is also evidenced that the solution exhibits a rapid reaction on exposure to air by shifting the absorbance peak to 386 nm. In addition, it does not present notable photosensitivity with respect to exposure to sunlight.


Author(s):  
D. Zudhistira ◽  
V. Viswanathan ◽  
V. Narang ◽  
J.M. Chin ◽  
S. Sharang ◽  
...  

Abstract Deprocessing is an essential step in the physical failure analysis of ICs. Typically, this is accomplished by techniques such as wet chemical methods, RIE, and mechanical manual polishing. Manual polishing suffers from highly non-uniform delayering particularly for sub 20nm technologies due to aggressive back-end-of-line scaling and porous ultra low-k dielectric films. Recently gas assisted Xe plasma FIB has demonstrated uniform delayering of the metal and dielectric layers, achieving a planar surface of heterogeneous materials. In this paper, the successful application of this technique to delayer sub-20 nm microprocessor chips with real defects to root cause the failure is presented.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1694
Author(s):  
Noemi Jardón-Maximino ◽  
Gregorio Cadenas-Pliego ◽  
Carlos A. Ávila-Orta ◽  
Víctor Eduardo Comparán-Padilla ◽  
Luis E. Lugo-Uribe ◽  
...  

Copper nanoparticles (CuNPs) functionalized with polyethyleneimine (PEI) and 4-aminobutyric acid (GABA) were used to obtain composites with isotactic polypropylene (iPP). The iPP/CuNPs composites were prepared at copper concentrations of 0.25–5.0 wt % by melt mixing, no evidence of oxidation of the CuNP was observed. Furthermore, the release of copper ions from iPP/CuNPs composites in an aqueous medium was studied. The release of cupric ions was higher in the composites with 2.5 and 5.0 wt %. These composites showed excellent antibacterial activity (AA) toward Pseudomona aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The incorporation of CuNP into the iPP polymeric matrix slightly decreased the thermal stability of the composite material but improved the crystallinity and the storage modulus. This evidence suggests that CuNPs could work as nucleating agents in the iPP crystallization process. The iPP/CuNPs composites presented better AA properties compared to similar composites reported previously. This behavior indicates that the new materials have great potential to be used in various applications that can be explored in the future.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 401
Author(s):  
Ignacio A. Jessop ◽  
Yasmín P. Pérez ◽  
Andrea Jachura ◽  
Hipólito Nuñez ◽  
Cesar Saldías ◽  
...  

In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs’ effect and, to a lesser extent, to the cationic CPE.


ChemInform ◽  
2010 ◽  
Vol 29 (32) ◽  
pp. no-no
Author(s):  
N. A. DHAS ◽  
C. P. RAJ ◽  
A. GEDANKEN

Sign in / Sign up

Export Citation Format

Share Document