scholarly journals Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaeaL.) Plants at Different Transplant Conditions

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
María Josefina Bompadre ◽  
Mariana Pérgola ◽  
Laura Fernández Bidondo ◽  
Roxana Paula Colombo ◽  
Vanesa Analía Silvani ◽  
...  

The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains ofRhizophagus irregularis(GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Vol 26 (02) ◽  
pp. 201-208
Author(s):  
Anass Kchikich

Nitrogen (N), one of the most important elements for plant growth, is needed by plants in large quantities. However, this nutrient has limited supply in the soil. Arbuscular mycorrhizal fungi (AMF) are known for their ability to form symbiotic association with plants and transfer the mineral nutrients to the host plants. To validate this hypothesis on sorghum plants, three ecotypes of this cereal (3p4, 3p9 and 4p11) were cultivated with and without AMF under low nitrogen concentration (0.5 mM NH4+). Growth parameters were determined and key enzymes responsible for nitrogen and carbon metabolisms such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), phosphoenolpyruvate carboxylase (PEPC), isocitrate dehydrogenase (ICDH), malate dehydrogenase (MDH) and asparate aminotransferase (AAT) were measured. For the three sorghum ecotypes, mycorrhizal plants showed a higher plant growth compared to the control plants. The biochemical parameters revealed a significant increase in the nitrogen assimilatory enzymes; GS and GDH in the leaves and roots of mycorrhizal plants. Furthermore, mycorrhizal fungi also appear to have a significant effect on carbon assimilatory enzymes. These enzymes are known to have a cardinal role in the provision of carbon skeletons essential for the assimilation of ammonium and thus, amino acids synthesis. Our study indicates clearly that AMF can be an efficient way to optimize nitrogen uptake and/or assimilation by plants and thus improve the crop yields with lower amount of nitrogen fertilizers. © 2021 Friends Science Publishers


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Anuroopa Nanjundappa ◽  
Davis Joseph Bagyaraj ◽  
Anil Kumar Saxena ◽  
Murugan Kumar ◽  
Hillol Chakdar

AbstractSoil microorganisms play an important role in enhancing soil fertility and plant health. Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria form a key component of the soil microbial population. Arbuscular mycorrhizal fungi form symbiotic association with most of the cultivated crop plants and they help plants in phosphorus nutrition and protecting them against biotic and abiotic stresses. Many species of Bacillus occurring in soil are also known to promote plant growth through phosphate solubilization, phytohormone production and protection against biotic and abiotic stresses. Synergistic interaction between AMF and Bacillus spp. in promoting plant growth compared to single inoculation with either of them has been reported. This is because of enhanced nutrient uptake, protection against plant pathogens and alleviation of abiotic stresses (water, salinity and heavy metal) through dual inoculation compared to inoculation with either AMF or Bacillus alone.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


2008 ◽  
Vol 5 (3) ◽  
pp. 395-398
Author(s):  
Baghdad Science Journal

Arbuscular mycorrhizal fungi and sulphur foam added either at direct seeding or at transplanting decreased the effects of nematode (Meloidogyne javanica) on eggplant growth, and improved plant health. Experiments were conducted to study the possible interactions between the Mycorrhizal fungi (Glomus mossae and Gigaspora spp.) and sulphur foam to control M. javanica on eggplant at seed or seedling stage. Experiment at seed stage treated with Mycorrhiza or sulphur foam alone or together stimulated the growth and reduced Nematode infestation significantly. Treated plant at seedling stage increased plant growth and reduced the number of galls /gm of root system. The interaction between Mycorrhiza and sulpher foam treatments was not significant.


Sign in / Sign up

Export Citation Format

Share Document