scholarly journals Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Keun-Hyeok Yang ◽  
Yong-Su Jeon

The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (RSCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up toRSCMof 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased atRSCMof 0.9. Hence, it is recommended thatRSCMneeds to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete.

10.29007/81v5 ◽  
2018 ◽  
Author(s):  
Ashika Shah ◽  
Indrajit Patel ◽  
Jagruti Shah ◽  
Gaurav Gohil

In the production of Self Compacting concrete (SCC), the use of quaternary blend of supplementary cementitious materials (SCM’s) has not found enough applications. For this purpose, an effort has been done to present a mix design for M60 grade and M80 grade SCC with quaternary blending of fly ash(FA), ground granulated blast furnace slag (GGBS), silica fume (SF) in accordance with EFNARC guidelines. Findings: In this study, cement has been replaced with SCM’s from 30% to 50%. Fresh properties of concrete were tested for slump flow, T50 test and U box. The hardened properties of concrete were tested for compressive strength and durability. The tests were performed for 7, 28, 56 and 91 days. The results indicate that the use of quaternary blend has improved the workability, compressive strength and durability properties of specimens than the control specimen. Application: The primary contribution is to fill the congestedreinforcement and increase the durability and life span of the structure.


2017 ◽  
Vol 44 (11) ◽  
pp. 918-926 ◽  
Author(s):  
H.Z. Lopez-Calvo ◽  
P. Montes-Garcia ◽  
E.M. Alonso-Guzmán ◽  
W. Martinez-Molina ◽  
T.W. Bremner ◽  
...  

This paper reports a study carried out to evaluate the effects of corrosion inhibiting admixtures, calcium nitrite and disodium tetrapropenyl succinate, in combination with supplementary cementitious materials, fly ash and silica fume Portland cement, on the compressive strength and certain durability properties of high performance concrete. Mixture formulations, including binary and ternary combinations of these admixtures were evaluated. Chloride profiles after 91 and 365 days of exposure and the compressive strength and electrical resistivity at 1, 7, 14, 28, 180, and 365 days of age were estimated. Also, results of corrosion evaluation after five-year exposure to a natural marine environment at Treat Island Maine, USA are presented and discussed. Results indicate that the use of corrosion inhibitors in combination with supplementary cementitious materials was beneficial, albeit to various degrees, in enhancing the strength and durability properties of high performance concrete with no noticeable adverse effects.


2020 ◽  
Vol 309 ◽  
pp. 26-30 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Tomáš Trtík ◽  
Roman Chylík ◽  
Vladimír Hrbek

The paper compares macromechanical and micromechanical properties of high-performance concrete containing supplementary cementitious materials and basalt aggregate. The aggregate was either a common unprocessed crushed basalt aggregate or crushed basalt aggregate the coarse fractions (4/8 and 8/16 mm) of which were washed by water and dried before use. The observed macro-mechanical properties were compressive strength, tensile strength, elastic modulus and depth of penetration of water under pressure; the paper is focused on the first observed property, which is the basic material characteristic. On the microscale, the thickness of the interfacial transition zone (ITZ) was determined by nanoindentation. The positive influence of supplementary cementitious materials and aggregate washing on compressive strength was confirmed and the correlation between macromechanical and micromechanical characteristics was proved.


2017 ◽  
Vol 67 (325) ◽  
pp. 114 ◽  
Author(s):  
M. A. Trezza ◽  
S. Zito ◽  
A. Tironi ◽  
E. F. Irassar ◽  
V. F. Rahhal

Demolition ceramic wastes (DCWs) were investigated in order to determine their potential use as supplementary cementitious materials in Portland Blended Cements (PBCs). For this purpose, three ceramic wastes were investigated. After characterization of the materials used, the effect of ceramic waste replacement (8, 24 and 40% by mass) was analyzed. Pozzolanic activity, hydration progress, workability and compressive strength were determined at 2, 7 and 28 days. The results showed that the ground wastes behave as filler at an early age, but as hydration progresses, the pozzolanic activity of ceramic waste contributes to the strength requirement.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1472
Author(s):  
Sungwoo Park ◽  
Siyu Wu ◽  
Zhichao Liu ◽  
Sukhoon Pyo

Although ultra high-performance concrete (UHPC) has great performance in strength and durability, it has a disadvantage in the environmental aspect; it contains a large amount of cement that is responsible for a high amount of CO2 emissions from UHPC. Supplementary cementitious materials (SCMs), industrial by-products or naturally occurring materials can help relieve the environmental burden by reducing the amount of cement in UHPC. This paper reviews the effect of SCMs on the properties of UHPC in the aspects of material properties and environmental impacts. It was found that various kinds of SCMs have been used in UHPC in the literature and they can be classified as slag, fly ash, limestone powder, metakaolin, and others. The effects of each SCM are discussed mainly on the early age compressive strength, the late age compressive strength, the workability, and the shrinkage of UHPC. It can be concluded that various forms of SCMs were successfully applied to UHPC possessing the material requirement of UHPC such as compressive strength. Finally, the analysis on the environmental impact of the UHPC mix designs with the SCMs is provided using embodied CO2 generated during the material production.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 446
Author(s):  
L Krishnaraj ◽  
P T. Ravichandran ◽  
M V.A.Karthik ◽  
N Satheeshram Avudaiyappan ◽  
. .

The life of the concrete is strongly influenced by durability parameters. The permeability is one of the main characteristics influencing the durability of concrete. The concrete is more permeable due to the ingress of water, oxygen, chloride, sulphate, and other potential deleterious substances. The durability of concrete is mainly affected by pore structure system of concrete and addingthe supplementary cementitious materials (SCM), such as fly ash, slag cement, and silica fume can be decrease permeability. Crystalline technology enhances the strength of concrete by filling the poresand micro-cracks with non-dissolvable substances. To study the efficiency of crystalline formation in concrete in terms of more permeable should be guaranteed through a specific technique.The effectiveness of crystalline waterproofing system with partial replacement cement by GGBS is studiedin terms of strength and durability. The performance of the two different types of crystalline waterproofing integral admixtures has been studied for compressive strength, Split tensile strength, workability, water permeability, Rapid chloride permeability test and porosity in this paper.The early strength increased in GGBS with crystalline admixture concretes compare to the control concrete. No significant strength reduction is observed in GGBS concretes with crystalline admixture when replaced with 20% and 40% of cement than control concrete.  


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Punnaman Norrarat ◽  
Weerachart Tangchirapat ◽  
Smith Songpiriyakij ◽  
Chai Jaturapitakkul

This paper investigates the cement hydration, and the slag reaction contributes to the compressive strengths of mortars mixed with ground river sand (GRS) and ground-granulated blast furnace (GGBF) slag with different particle sizes. GRS (inert material) and GGBF slag (reactive material) were ground separately until the median particle sizes of 32 ± 1, 18 ± 1, and 5 ± 1 micron and used to replace Portland cement (PC) in large amount (40–60%) by weight of the binder. The results showed that, at the early age, the compressive strength obtained from the cement hydration was higher than that obtained from the slag reaction. The results of compressive strength also indicated that the GGBF slag content and particle size play important roles in the slag reaction at the later ages, whereas cement hydration is more prominent at the early ages. Although the results could be expected from the use of GGBF slag to replace PC in mortar or concrete, this study had presented the values of the compressive strength along with ages and the finenesses of GGBF slag that contributed from cement hydration and from GGBF slag reaction.


Sign in / Sign up

Export Citation Format

Share Document