scholarly journals Portland blended cements: demolition ceramic waste management

2017 ◽  
Vol 67 (325) ◽  
pp. 114 ◽  
Author(s):  
M. A. Trezza ◽  
S. Zito ◽  
A. Tironi ◽  
E. F. Irassar ◽  
V. F. Rahhal

Demolition ceramic wastes (DCWs) were investigated in order to determine their potential use as supplementary cementitious materials in Portland Blended Cements (PBCs). For this purpose, three ceramic wastes were investigated. After characterization of the materials used, the effect of ceramic waste replacement (8, 24 and 40% by mass) was analyzed. Pozzolanic activity, hydration progress, workability and compressive strength were determined at 2, 7 and 28 days. The results showed that the ground wastes behave as filler at an early age, but as hydration progresses, the pozzolanic activity of ceramic waste contributes to the strength requirement.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1650 ◽  
Author(s):  
Viviana Fátima Rahhal ◽  
Mónica Adriana Trezza ◽  
Alejandra Tironi ◽  
Claudia Cristina Castellano ◽  
Milena Pavlíková ◽  
...  

Two waste fired brick powders coming from brick factories located in Argentine and Czech Republic were examined as alternative mineral admixtures for the production of blended cements. In pastes composition, local Portland cements (Argentine and Czech) were substituted with 8–40%, by mass, with powdered ceramic waste. For the ceramic waste-Portland cement system, workability, the heat released, pozzolanity, specific density, compressive strength, hydrated phases, porosity, and pore size distribution were tested. The relevance of the dilution effect, filler effect, and pozzolanic activity was analyzed to describe the general behavior of the pozzolan/cement system. The properties and performance of cement blends made with finely ground brick powder depended on the composition of ceramic waste and its reactivity, the plain cement used, and the replacement level. Results showed that the initial mini-slump was not affected by a low ceramic waste replacement (8% and 16%), and then it was decreased with an increase in the ceramic waste content. Brick powder behaved as a filler at early ages, but when the hydration proceeded, its pozzolanic activity consumed partially the calcium hydroxide and promoted the formation of hydrated calcium aluminates depending on the age and present carbonates. Finally, blended cements with fired brick powder had low compressive strength at early ages but comparable strength-class at later age.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Keun-Hyeok Yang ◽  
Yong-Su Jeon

The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (RSCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up toRSCMof 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased atRSCMof 0.9. Hence, it is recommended thatRSCMneeds to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete.


Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 461-469 ◽  
Author(s):  
R. A. Araújo ◽  
A. L. R. de Menezes ◽  
K. C. Cabral ◽  
A. K. C. Nóbrega ◽  
A. E. Martinelli ◽  
...  

Abstract Alternative cementitious materials can potentially reduce the environmental impact of the extraction of lime and the hazardous production of Portland cement. Red ceramic waste can be comminuted to fine particles with both filler and pozzolanic activity and used in Portland and lime mortars. This study presents the evaluation of the pozzolanic activity of red ceramic waste by physicochemical and mechanical methods using Portland cement and lime mortars. The evaluated waste depicted high pozzolanic activity and absence of Na2O, and consumed 32% of CaO according to the adapted Chapelle test. The compressive strength recorded in the pozzolanic activity test with lime was 7.1 MPa at 7 days. Moreover, the compressive strength of mixes with 25% replacement of Portland cement by red ceramic waste was 11% higher than the reference waste-free composition. The red ceramic waste depicted adequate characteristics to be used in the production of large volumes of Portland and lime mixes commonly employed in the civil construction.


2017 ◽  
Vol 2 (5) ◽  
pp. 50 ◽  
Author(s):  
John Kamau ◽  
Ash Ahmed ◽  
Paul Hirst ◽  
Joseph Kangwa

Durability of concrete is defined as its ability to resist any form of deterioration, allowing it to retain its original form and quality after it has been exposed to the environment of its intended use. Sulfate attack causes concrete to lose its compressive strength through the decomposition of the products of hydration of cement. Pozzolanic reactions from Supplementary Cementitious Materials (SCMs) help in resisting the sodium sulfate (Na2SO4) attack. This work investigated the potential use of Anthill Soil (AHS) to improve the performance of concrete in sulfate aggressive environments. An AHS replacement of 30% (per cent) by the weight of cement was used to make concrete test bars and cubes. The 0% replacement also referred to as the control was used as the point of reference from which all performances were measured. The specimens were immersed in 5% Na2SO4, 5% magnesium sulfate (MgSO4), and 5% mixed solution of Na2SO4 and MgSO4. Elongation measurements were taken over a period of 9 months, whereas compressive strength tests, which were used to work out the Strength Deterioration Factors (SDFs) and visual observations for surface deterioration were carried out at 9 months. From the results, AHS specimens that were immersed in the Na2SO4, MgSO4 and mixed Na2SO4 and MgSO4 solutions performed poorly in elongation compared with the control specimens, but had lower SDFs in the Na2SO4 and mixed solutions of Na2SO4 and MgSO4. The surface deterioration of AHS specimens in the MgSO4 solution was worse than that of the control specimens but was similar to that of the control in the mixed sulfate solution of Na2SO4 and MgSO4. The SDF results highlight the potential of using AHS with an advantage in Na2SO4 and mixed Na2SO4 and MgSO4 environments.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


2019 ◽  
Vol 26 (1) ◽  
pp. 449-464 ◽  
Author(s):  
Mifeng Gou ◽  
Longfei Zhou ◽  
Nathalene Wei Ying Then

AbstractOne of the advantages of cement and the cement concrete industry in sustainability is the ability to utilize large amounts of industrial solid wastes such as fly ash and ground granulated blast furnace slag. Tailings are solid wastes of the ore beneficiation process in the extractive industry and are available in huge amounts in some countries. This paper reviews the potential utilization of tailings as a replacement for fine aggregates, as supplementary cementitious materials (SCMs) in mortar or concrete, and in the production of cement clinker. It was shown in previous research that while tailings had been used as a replacement for both fine aggregate and cement, the workability of mortar or concrete reduced. Also, at a constant water to cement ratio, the compressive strength of concrete increased with the tailings as fine aggregate. However, the compressive strength of concrete decreased as the replacement content of the tailings as SCMs increased, even whentailings were ground into smaller particles. Not much research has been dedicated to the durability of concrete with tailings, but it is beneficial for heavy metals in tailings to stabilize/solidify in concrete. The clinker can be produced by using the tailings, even if the tailings have a low SiO2 content. As a result, the utilization of tailings in cement and concrete will be good for the environment both in the solid waste processing and virgin materials using in the construction industry.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4248
Author(s):  
Xingxing Li ◽  
Ying Ma ◽  
Xiaodong Shen ◽  
Ya Zhong ◽  
Yuwei Li

The utilization of coral waste is an economical way of using concrete in coastal and offshore constructions. Coral waste with more than 96% CaCO3 can be ground to fines and combined with supplementary cementitious materials (SCMs) such as fly ash, silica fume, granulated blast furnace slag in replacing Portland cement to promote the properties of cement concrete. The effects of coral sand powder (CSP) compared to limestone powder (LSP) blended with SCMs on hydration and microstructure of mortar were investigated. The result shows CSP has higher activity than LSP when participating in the chemical reaction. The chemical effect among CSP, SCMs, and ordinary Portland cement (OPC) results in the appearance of the third hydration peak, facilitating the production of carboaluminate. CSP-SCMs mortar has smaller interconnected pores on account of the porous character of CSP as well as the filler and chemical effect. The dilution effect of CSP leads to the reduction of compressive strength of OPC-CSP and OPC-CSP-SCMs mortars. The synergic effects of CSP with slag and silica fume facilitate the development of compressive strength and lead to a compacted isolation and transfer zone (ITZ) in mortar.


Author(s):  
Olusola Emmanuel Babalola ◽  
Paul O. Awoyera

Supplementary cementitious materials are most needed to enhance a sustainable development in poor communities. It is pertinent to investigate the suitability of such alternative materials for construction. The present study evaluates the strength characteristics of concrete made with varied proportion of Cordia millenii ash blended with Portland cement. Chemical composition of Cordia millenii and the setting time when blended with cement was determined. Other laboratory tests performed on Cordia millenii blended cement include: sieve analysis and specific gravity. Five replacement percentages of Cordia millenii (5%, 10%, 15%, and 20%) were blended with cement in concrete. Control specimens were also produced with only cement. Tests to determine the workability, air entrained, bulk density and compressive strength properties of the concrete were also conducted. Results obtained revealed that optimum Cordia millenii mix is 10%, which yielded the highest density and compressive strength in the concrete.


2020 ◽  
Vol 166 ◽  
pp. 06007
Author(s):  
Myroslav Sanytsky ◽  
Tetiana Kropyvnytska ◽  
Stanislav Fic ◽  
Hanna Ivashchyshyn

Sustainable development depends on a consistency of interests, social, ecological and economic, and that the interests are evaluated in a balanced manner. In order to reduce CO2 emissions, the conception of decreasing clinker factor and increasing the role of supplementary cementitious materials (SCMs) in the cementitious materials has high economical and environmental efficiency. The performance of clinkerefficient blended cements with supplementary cementitious materials were examined. The influence of superfine zeolite with increased surface energy on the physical and chemical properties of low-carbon blended cements is shown. Increasing the dispersion of cementitious materials contributes to the growth of their strength activity index due to compaction of cement matrix and pozzolanic reactions in unclincker part. In consequence of the early structure formation and the directed formation of the microstructure of the cement matrix is solving the problem of obtaining clinker-efficient concretes. Shown that low-carbon blended cements with high volume of SCMs are suitable, in principle, for producing structural concretes.


2020 ◽  
Vol 32 (4) ◽  
pp. 04020049
Author(s):  
Inamullah Khan ◽  
Tengfei Xu ◽  
Mohammad Shakhaout Hossain Khan ◽  
Arnaud Castel ◽  
Raymond Ian Gilbert

Sign in / Sign up

Export Citation Format

Share Document