scholarly journals Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Keranmu Xielifuguli ◽  
Akira Fujisawa ◽  
Yusuke Kusumoto ◽  
Kazuyuki Matsumoto ◽  
Kenji Kita

People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant) for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images.

2019 ◽  
Vol 9 (11) ◽  
pp. 2357 ◽  
Author(s):  
Niccolò Dematteis ◽  
Daniele Giordan ◽  
Paolo Allasia

In Earth Science, image cross-correlation (ICC) can be used to identify the evolution of active processes. However, this technology can be ineffective, because it is sometimes difficult to visualize certain phenomena, and surface roughness can cause shadows. In such instances, manual image selection is required to select images that are suitably illuminated, and in which visibility is adequate. This impedes the development of an autonomous system applied to ICC in monitoring applications. In this paper, the uncertainty introduced by the presence of shadows is quantitatively analysed, and a method suitable for ICC applications is proposed: The method automatically selects images, and is based on a supervised classification of images using the support vector machine. According to visual and illumination conditions, the images are divided into three classes: (i) No visibility, (ii) direct illumination and (iii) diffuse illumination. Images belonging to the diffuse illumination class are used in cross-correlation processing. Finally, an operative procedure is presented for applying the automated ICC processing chain in geoscience monitoring applications.


Latest trends of the image processing software, the growth of image manipulation is at peak. To detect the use of such software on an image is a growing research anomaly. This paper proposes a novel copy-move forgery localization approach in an image through a blind approach with no prior information available to the algorithm. Here, we have split the image into equal size blocks and extracted SIFT features for every block. The center of mass for each block is calculated after applying the Gaussian filter. Finally, image features are matched based on the KNN algorithm for CMF localization. However, for classification, the localisation mask is created for the dataset, and is used to train a Convolutional neural networks(CNN) and this trained CNN in turn is used for classification of images as authentic or tampered.


Author(s):  
Ramakrishnan Mukundan

This paper presents novel feature descriptors and classification algorithms for automated scoring of HER2 in Whole Slide Images (WSI) of breast cancer histology slides. Since a large amount of processing is involved in analyzing WSI images, the primary design goal has been to keep the computational complexity to the minimum possible level and to use simple, yet robust feature descriptors that can provide accurate classification of the slides. We propose two types of feature descriptors that encode important information about staining patterns and the percentage of staining present in ImmunoHistoChemistry (IHC) stained slides. The first descriptor is called a characteristic curve which is a smooth non-increasing curve that represents the variation of percentage of staining with saturation levels. The second new descriptor introduced in this paper is an LBP feature curve which is also a non-increasing smooth curve that represents the local texture of the staining patterns. Both descriptors show excellent interclass variance and intraclass correlation, and are suitable for the design of automatic HER2 classification algorithms. This paper gives the detailed theoretical aspects of the feature descriptors and also provides experimental results and comparative analysis.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2011 ◽  
Vol 8 (1) ◽  
pp. 201-210
Author(s):  
R.M. Bogdanov

The problem of determining the repair sections of the main oil pipeline is solved, basing on the classification of images using distance functions and the clustering principle, The criteria characterizing the cluster are determined by certain given values, based on a comparison with which the defect is assigned to a given cluster, procedures for the redistribution of defects in cluster zones are provided, and the cluster zones parameters are being changed. Calculations are demonstrating the range of defect density variation depending on pipeline sections and the universal capabilities of linear objects configuration with arbitrary density, provided by cluster analysis.


2021 ◽  
pp. 1-11
Author(s):  
Yaning Liu ◽  
Lin Han ◽  
Hexiang Wang ◽  
Bo Yin

Papillary thyroid carcinoma (PTC) is a common carcinoma in thyroid. As many benign thyroid nodules have the papillary structure which could easily be confused with PTC in morphology. Thus, pathologists have to take a lot of time on differential diagnosis of PTC besides personal diagnostic experience and there is no doubt that it is subjective and difficult to obtain consistency among observers. To address this issue, we applied deep learning to the differential diagnosis of PTC and proposed a histological image classification method for PTC based on the Inception Residual convolutional neural network (IRCNN) and support vector machine (SVM). First, in order to expand the dataset and solve the problem of histological image color inconsistency, a pre-processing module was constructed that included color transfer and mirror transform. Then, to alleviate overfitting of the deep learning model, we optimized the convolution neural network by combining Inception Network and Residual Network to extract image features. Finally, the SVM was trained via image features extracted by IRCNN to perform the classification task. Experimental results show effectiveness of the proposed method in the classification of PTC histological images.


Author(s):  
Chaoqing Wang ◽  
Junlong Cheng ◽  
Yuefei Wang ◽  
Yurong Qian

A vehicle make and model recognition (VMMR) system is a common requirement in the field of intelligent transportation systems (ITS). However, it is a challenging task because of the subtle differences between vehicle categories. In this paper, we propose a hierarchical scheme for VMMR. Specifically, the scheme consists of (1) a feature extraction framework called weighted mask hierarchical bilinear pooling (WMHBP) based on hierarchical bilinear pooling (HBP) which weakens the influence of invalid background regions by generating a weighted mask while extracting features from discriminative regions to form a more robust feature descriptor; (2) a hierarchical loss function that can learn the appearance differences between vehicle brands, and enhance vehicle recognition accuracy; (3) collection of vehicle images from the Internet and classification of images with hierarchical labels to augment data for solving the problem of insufficient data and low picture resolution and improving the model’s generalization ability and robustness. We evaluate the proposed framework for accuracy and real-time performance and the experiment results indicate a recognition accuracy of 95.1% and an FPS (frames per second) of 107 for the framework for the Stanford Cars public dataset, which demonstrates the superiority of the method and its availability for ITS.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 109
Author(s):  
Jimy Oblitas ◽  
Jorge Ruiz

Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa.


Author(s):  
Muhammad Irfan Sharif ◽  
Jian Ping Li ◽  
Javeria Amin ◽  
Abida Sharif

AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.


Sign in / Sign up

Export Citation Format

Share Document