scholarly journals Modeling the Differences in Biochemical Capabilities ofPseudomonasSpecies by Flux Balance Analysis: How Good Are Genome-Scale Metabolic Networks at Predicting the Differences?

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Parizad Babaei ◽  
Tahereh Ghasemi-Kahrizsangi ◽  
Sayed-Amir Marashi

To date, several genome-scale metabolic networks have been reconstructed. These models cover a wide range of organisms, from bacteria to human. Such models have provided us with a framework for systematic analysis of metabolism. However, little effort has been put towards comparing biochemical capabilities of closely related species using their metabolic models. The accuracy of a model is highly dependent on the reconstruction process, as some errors may be included in the model during reconstruction. In this study, we investigated the ability of threePseudomonasmetabolic models to predict the biochemical differences, namely, iMO1086, iJP962, and iSB1139, which are related toP. aeruginosaPAO1,P. putidaKT2440, andP. fluorescensSBW25, respectively. We did a comprehensive literature search for previous works containing biochemically distinguishable traits over these species. Amongst more than 1700 articles, we chose a subset of them which included experimental results suitable forin silicosimulation. By simulating the conditions provided in the actual biological experiment, we performed case-dependent tests to compare thein silicoresults to the biological ones. We found out that iMO1086 and iJP962 were able to predict the experimental data and were much more accurate than iSB1139.

2022 ◽  
Author(s):  
Javad Zamani ◽  
Sayed-Amir Marashi ◽  
Tahmineh Lohrasebi ◽  
Mohammad-Ali Malboobi ◽  
Esmail Foroozan

Genome-scale metabolic models (GSMMs) have enabled researchers to perform systems-level studies of living organisms. As a constraint-based technique, flux balance analysis (FBA) aids computation of reaction fluxes and prediction of...


Author(s):  
Samuel M. D. Seaver ◽  
Filipe Liu ◽  
Qizhi Zhang ◽  
James Jeffryes ◽  
José P. Faria ◽  
...  

ABSTRACTFor over ten years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions;; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical “Rosetta Stone” to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies, and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org and KBase.


2016 ◽  
Vol 283 (1839) ◽  
pp. 20161536 ◽  
Author(s):  
Sayed-Rzgar Hosseini ◽  
Olivier C. Martin ◽  
Andreas Wagner

Recombination is an important source of metabolic innovation, especially in prokaryotes, which have evolved the ability to survive on many different sources of chemical elements and energy. Metabolic systems have a well-understood genotype–phenotype relationship, which permits a quantitative and biochemically principled understanding of how recombination creates novel phenotypes. Here, we investigate the power of recombination to create genome-scale metabolic reaction networks that enable an organism to survive in new chemical environments. To this end, we use flux balance analysis, an experimentally validated computational method that can predict metabolic phenotypes from metabolic genotypes. We show that recombination is much more likely to create novel metabolic abilities than random changes in chemical reactions of a metabolic network. We also find that phenotypic innovation is more likely when recombination occurs between parents that are genetically closely related, phenotypically highly diverse, and viable on few rather than many carbon sources. Survival on a new carbon source preferentially involves reactions that are superessential, that is, essential in many metabolic networks. We validate our observations with data from 61 reconstructed prokaryotic metabolic networks. Our systematic and quantitative analysis of metabolic systems helps understand how recombination creates innovation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nunthaphan Vikromvarasiri ◽  
Tomokazu Shirai ◽  
Akihiko Kondo

Abstract Background Glycerol is a desirable alternative substrate for 2,3-butanediol (2,3-BD) production for sustainable development in biotechnological industries and non-food competitive feedstock. B. subtilis, a “generally recognized as safe” organism that is highly tolerant to fermentation products, is an ideal platform microorganism to engineer the pathways for the production of valuable bio-based chemicals, but it has never been engineered to improve 2,3-BD production from glycerol. In this study, we aimed to enhance 2,3-BD production from glycerol in B. subtilis through in silico analysis. Genome-scale metabolic model (GSM) simulations was used to design and develop the metabolic pathways of B. subtilis. Flux balance analysis (FBA) simulation was used to evaluate the effects of step-by-step gene knockouts to improve 2,3-BD production from glycerol in B. subtilis. Results B. subtilis was bioengineered to enhance 2,3-BD production from glycerol using FBA in a published GSM model of B. subtilis, iYO844. Four genes, ackA, pta, lctE, and mmgA, were knocked out step by step, and the effects thereof on 2,3-BD production were evaluated. While knockout of ackA and pta had no effect on 2,3-BD production, lctE knockout led to a substantial increase in 2,3-BD production. Moreover, 2,3-BD production was improved by mmgA knockout, which had never been investigated. In addition, comparisons between in silico simulations and fermentation profiles of all B. subtilis strains are presented in this study. Conclusions The strategy developed in this study, using in silico FBA combined with experimental validation, can be used to optimize metabolic pathways for enhanced 2,3-BD production from glycerol. It is expected to provide a novel platform for the bioengineering of strains to enhance the bioconversion of glycerol into other highly valuable chemical products.


2021 ◽  
Author(s):  
Fernando Cruz ◽  
João Capela ◽  
Eugénio C. Ferreira ◽  
Miguel Rocha ◽  
Oscar Dias

AbstractAs the reconstruction of Genome-Scale Metabolic Models becomes standard practice in systems biology, the number of organisms having at least one metabolic model at the genome-scale is peaking at an unprecedented scale. The automation of several laborious tasks, such as gap-finding and gap-filling, allowed to develop GSMMs for poorly described organisms. However, such models’ quality can be compromised by the automation of several steps, which may lead to erroneous phenotype simulations.The Biological networks constraint-based In Silico Optimization (BioISO) is a computational tool aimed at accelerating the reconstruction of Genome-Scale Metabolic Models. This tool facilitates the manual curation steps by reducing the large search spaces often met when debugging in silico biological models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis to evaluate and guide debugging of in silico phenotype simulations. The potential of BioISO to guide the debugging of model reconstructions was showcased using GSMMs available in literature and compared with the results of two other state-of-the-art gap-filling tools (Meneco and fastGapFill). Furthermore, BioISO was used as Meneco’s gap-finding algorithm to reduce the number of proposed solutions (reaction sets) for filling the gaps.BioISO was implemented as a webserver available at https://bioiso.bio.di.uminho.pt; and integrated into merlin as a plugin. BioISO’s implementation as a Python™ package can also be retrieved from https://github.com/BioSystemsUM/BioISO.


2020 ◽  
Vol 49 (D1) ◽  
pp. D575-D588
Author(s):  
Samuel M D Seaver ◽  
Filipe Liu ◽  
Qizhi Zhang ◽  
James Jeffryes ◽  
José P Faria ◽  
...  

Abstract For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical ‘Rosetta Stone’ to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.


2021 ◽  
Author(s):  
Vimaladhasan Senthamizhan ◽  
Sunanda Subramaniam ◽  
Arjun Raghavan ◽  
Karthik Raman

AbstractSummaryGenome-scale metabolic networks have been reconstructed for hundreds of organisms over the last two decades, with wide-ranging applications, including the identification of drug targets. Constraint-based approaches such as flux balance analysis have been effectively used to predict single and combinatorial drug targets in a variety of metabolic networks. We have previously developed Fast-SL, an efficient algorithm to rapidly enumerate all possible synthetic lethals from metabolic networks. Here, we introduce CASTLE, an online standalone database, which contains synthetic lethals predicted from the metabolic networks of over 130 organisms. These targets include single, double or triple lethal set of genes and reactions, and have been predicted using the Fast-SL algorithm. The workflow used for building CASTLE can be easily applied to other pathogenic models and used to identify novel therapeutic targets.AvailabilityCASTLE is available at https://ramanlab.github.io/CASTLE/[email protected]


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jack Jansma ◽  
Sahar El Aidy

AbstractThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Julia Koblitz ◽  
Sabine Will ◽  
S. Riemer ◽  
Thomas Ulas ◽  
Meina Neumann-Schaal ◽  
...  

Genome-scale metabolic models are of high interest in a number of different research fields. Flux balance analysis (FBA) and other mathematical methods allow the prediction of the steady-state behavior of metabolic networks under different environmental conditions. However, many existing applications for flux optimizations do not provide a metabolite-centric view on fluxes. Metano is a standalone, open-source toolbox for the analysis and refinement of metabolic models. While flux distributions in metabolic networks are predominantly analyzed from a reaction-centric point of view, the Metano methods of split-ratio analysis and metabolite flux minimization also allow a metabolite-centric view on flux distributions. In addition, we present MMTB (Metano Modeling Toolbox), a web-based toolbox for metabolic modeling including a user-friendly interface to Metano methods. MMTB assists during bottom-up construction of metabolic models by integrating reaction and enzymatic annotation data from different databases. Furthermore, MMTB is especially designed for non-experienced users by providing an intuitive interface to the most commonly used modeling methods and offering novel visualizations. Additionally, MMTB allows users to upload their models, which can in turn be explored and analyzed by the community. We introduce MMTB by two use cases, involving a published model of Corynebacterium glutamicum and a newly created model of Phaeobacter inhibens.


Sign in / Sign up

Export Citation Format

Share Document