scholarly journals Theoretical Analysis and Adaptive Synchronization of a 4D Hyperchaotic Oscillator

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
T. Fonzin Fozin ◽  
J. Kengne ◽  
F. B. Pelap

We propose a new mathematical model of the TNC oscillator and study its impact on the dynamical properties of the oscillator subjected to an exponential nonlinearity. We establish the existence of hyperchaotic behavior in the system through theoretical analysis and by exploiting electronic circuit experiments. The obtained numerical results are found to be in good agreement with experimental observations. Moreover, the new technique on adaptive control theory is used on our model and it is rigorously proven that the adaptive synchronization can be achieved for hyperchaotic systems with uncertain parameters.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Shih-Yu Li ◽  
Cheng-Hsiung Yang ◽  
Li-Wei Ko ◽  
Chin-Teng Lin ◽  
Zheng-Ming Ge

We expose the chaotic attractors of time-reversed nonlinear system, further implement its behavior on electronic circuit, and apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial conditions (Ge et al., 1999, Ge and Yu, 2000, and Matsushima, 1972) are proposed to strictly prove that adaptive control can be accomplished successfully. The current scheme of adaptive control—by traditional Lyapunov stability theorem and Barbalat lemma, which are used to prove the error vector—approaches zero, as time approaches infinity. However, the core question—why the estimated or given parameters also approach to the uncertain parameters—remains without answer. By the new stability theory, those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this paper.


2017 ◽  
Vol 6 (4) ◽  
pp. 1-16 ◽  
Author(s):  
A. Almatroud Othman ◽  
M.S.M. Noorani ◽  
M. Mossa Al-sawalha

Function projective dual synchronization between two pairs of hyperchaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the Lyapunov stability theory, a suitable and effective adaptive control law and parameters update rule for unknown parameters are designed, such that function projective dual synchronization between the hyperchaotic Chen system and the hyperchaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


2013 ◽  
Vol 392 ◽  
pp. 222-226
Author(s):  
Bao Liang Mi ◽  
Guo Zeng Wu

A new four-dimensional chaotic system is presented in this paper. Some basic dynamical Properties of this chaotic system are investigated by means of Poincaré mapping, Lyapunov exponents and bifurcation diagram. The dynamical behaviours of this system are proved not only by performing numerical simulation and brief theoretical analysis but also by conducting an electronic circuit implementation.


2008 ◽  
Vol 22 (08) ◽  
pp. 1015-1023 ◽  
Author(s):  
XINGYUAN WANG ◽  
XIANGJUN WU

This paper studies the adaptive synchronization and parameter identification of an uncertain hyperchaotic Chen system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical hyperchaotic Chen systems asymptotically synchronized. With this approach, the synchronization and parameter identification of the hyperchaotic Chen system with five uncertain parameters can be achieved simultaneously. Theoretical proof and numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 304-313 ◽  
Author(s):  
M. Mossa Al-Sawalha ◽  
Ayman Al-Sawalha

AbstractThe objective of this article is to implement and extend applications of adaptive control to anti-synchronize different fractional order chaotic and hyperchaotic dynamical systems. The sufficient conditions for achieving anti–synchronization are derived by using the Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. Theoretical analysis and numerical simulations are shown to verify the results.


Author(s):  
Israr Ahmad ◽  
Azizan Bin Saaban ◽  
Adyda Binti Ibrahim ◽  
Said Al-Hadhrami ◽  
Mohammad Shahzad ◽  
...  

This paper addresses the chaos control and synchronization problems of a hyperchaotic system. It is assumed that the parameters of the hyperchaotic system are unknown and the system is perturbed by the external disturbance. Based on the Lyapunov stability theory and the adaptive control theory, suitable nonlinear controllers are designed for the asymptotic stability of the closed-loop system both for stabilization of hyperchaos at the origin and complete synchronization of two identical hyperchaotic systems. Accordingly, suitable update laws are proposed to estimate the fully uncertain parameters. All simulation results are carried out to validate the effectiveness of the theoretical findings. The effect of external disturbance is under our discussion.


2010 ◽  
Vol 21 (02) ◽  
pp. 249-259 ◽  
Author(s):  
CONG-XU ZHU

This paper investigates adaptive generalized projective synchronization (GPS) between two novel hyperchaotic systems with different structure and fully uncertain parameters. Based on the Lyapunov stability theorem and the adaptive control theory, GPS between the two hyperchaotic systems is achieved by proposing a new adaptive controller and a novel parameters estimation update law. Strict theoretical proof is put forward. Numerical simulations are presented to demonstrate the effectiveness of the proposed GPS scheme and verify the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaobing Zhou ◽  
Zhangbiao Fan ◽  
Dongming Zhou ◽  
Xiaomei Cai

We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively.


Sign in / Sign up

Export Citation Format

Share Document