scholarly journals Erythropoietic Potential of CD34+ Hematopoietic Stem Cells from Human Cord Blood and G-CSF-Mobilized Peripheral Blood

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Honglian Jin ◽  
Han-Soo Kim ◽  
Sinyoung Kim ◽  
Hyun Ok Kim

Red blood cell (RBC) supply for transfusion has been severely constrained by the limited availability of donor blood and the emergence of infection and contamination issues. Alternatively, hematopoietic stem cells (HSCs) from human organs have been increasingly considered as safe and effective blood source. Several methods have been studied to obtain mature RBCs from CD34+ hematopoietic stem cells viain vitroculture. Among them, human cord blood (CB) and granulocyte colony-stimulating factor-mobilized adult peripheral blood (mPB) are common adult stem cells used for allogeneic transplantation. Our present study focuses on comparing CB- and mPB-derived stem cells in differentiation from CD34+ cells into mature RBCs. By using CD34+ cells from cord blood and G-CSF mobilized peripheral blood, we showedin vitroRBC generation of artificial red blood cells. Our results demonstrate that CB- and mPB-derived CD34+ hematopoietic stem cells have similar characteristics when cultured under the same conditions, but differ considerably with respect to expression levels of various genes and hemoglobin development. This study is the first to compare the characteristics of CB- and mPB-derived erythrocytes. The results support the idea that CB and mPB, despite some similarities, possess different erythropoietic potentials inin vitroculture systems.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4709-4709 ◽  
Author(s):  
Maria Rosa Lidonnici ◽  
Annamaria Aprile ◽  
Marta Frittoli ◽  
Giacomo Mandelli ◽  
Ylenia Paleari ◽  
...  

Abstract Over the past decades outcomes of clinical hematopoietic stem cell transplants have established a clear relationship between the sources of hematopoietic stem cells (HSCs) infused and their differential homing and engraftment properties. For a long time, bone marrow (BM) harvest has been the preferred source of hematopoietic stem and progenitor cells (HSPCs) for hematopoietic reconstitution following myeloablative conditioning regimen. At present, mobilized peripheral blood (PB) is commonly used for hematopoietic cells transplantation in both adults and children, particularly in the autologous setting, and it has progressively replaced BM as the source of HSCs.HSCs are maintained in their niche by binding to cellular determinants through adhesion molecules and diverse strategies are currently used to promote their egress from BM to PB. Traditionally, the growth factor granulocyte-colony stimulating factor (G-CSF) represents the gold standard agent to mobilize HSPCs for transplantation. Nevertheless, other compounds have been recently tested. One of the most successful mobilizing agents is Plerixafor (AMD3100, Mozobil™), a bicyclam molecule that selectively and reversibly antagonizes the binding of stromal cell derived factor-1 (SDF-1), located on the surface of BM stromal cells and osteoclasts, to chemokine CXC-receptor-4 (CXCR4), located on the surface of HSPCs, with the subsequent mobilization in the blood. The use of this drug is currently approved by FDA and EMA in combination with G-CSF, in patients affected by lymphoma or multiple myeloma whose cells mobilize poorly with G-CSF alone. Clinical trials demonstrated that Plerixafor alone safely and rapidly mobilizes HSCs also in healthy donors, beta-thalassemia patients and pediatric patients affected by malignancies. Previous characterization studies on non-human primates and human samples of Plerixafor mobilized cells in comparison to cells mobilized by G-CSF alone or in combination with Plerixafor showed a different expression profile, cell composition and engrafting potential in a xenotransplant model. From these studies remains unsolved whether Plerixafor, G-CSF, or their combination mobilizes different primitive HSC populations, defined both by multimarker immunophenotype and in vivo functional analysis. In the present study we investigated by controlled comparative analysis the functional and molecular hallmarks of human HSCs collected from BM, G-CSF and/or Plerixafor mobilized peripheral blood. We show that Plerixafor alone mobilizes preferentially long-term hematopoietic stem cells (LT-HSCs), defined as CD34+CD38/lowCD90+CD45RA-CD49f+ cells and primitive populations of HSCs. These cells possess higher ability to home to hematopoietic niches and engraft in NOD/SCID/IL2rγnull (NSG) mice, resulting in enriched scid-repopulating cell frequency, in comparison to other sources. The higher content of CXCR4+ and CD49f+ cells correlates with this feature. Furthermore, global gene expression profiling highlights the superior in vivo reconstitution activity of Plerixafor mobilized cells. The "stemness" signature of cells dislodged from their niche by the drug is attenuated by the combined use with G-CSF, which emphasizes the gene expression profile induced by G-CSF treatment. These data indicate that a qualitative advantage accounts for the superior performance of Plerixafor mobilized cells. These findings provide the rationale for using a suboptimal dose of more primitive HSCs when target cell number for transplantation is limited, or when G-CSF mobilization is too risky like in sickle cell anemia patients. Moreover, CD34+ cells mobilized by Plerixafor alone or with the combination of G-CSF are efficiently transduced by a lentiviral vector encoding for human ß-globin gene (GLOBE LV) and are able to engraft and differentiate in vivo, supporting their use for gene therapy applications. Disclosures Ciceri: MolMed SpA: Consultancy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1190-1190
Author(s):  
Trista E. North ◽  
Wolfram Goessling ◽  
Myriam Armant ◽  
Grace S. Kao ◽  
Leslie E. Silberstein ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are commonly used in transplantation therapy to rescue the hematopoietic and immune systems following systemic chemotherapy or irradiation. However, some patients receive inadequate numbers of HSCs and this often results in delayed reconstitution of hematopoiesis and immune function and associated toxicities. We previously demonstrated that a stabilized derivative of prostaglandin (PG) E2 increases vertebrate HSCs both in vivo and in vitro. 16,16-dimethyl PGE2 (dmPGE2) significantly increased HSCs during zebrafish embryogenesis and in the adult marrow following injury. Incubation of murine embryonic stem cells with dmPGE2 during embryoid body differentiation resulted in a dose-dependent increase in hematopoietic colonies, demonstrating that the function of PGE2 in HSC regulation is conserved in mammals. Finally, ex vivo treatment of murine bone marrow with dmPGE2 resulted in a 2-fold increase in engrafting cells in a limiting dilution competitive repopulation assay. No negative effects on serial transplantability of HSCs were observed in these animal models. To investigate the therapeutic potential of PGE2 for the amplification of blood stem cells, we exposed human cord blood (hCB) cells to dmPGE2 in vitro and measured the effects on stem and progenitor populations both in vitro and in vivo. Red cell depleted umbilical cord blood specimens, cryopreserved for clinical use, were thawed and divided for parallel processing. Ex vivo treatment of hCB cells for 1 hour with dmPGE2 in dextran/albumin had no negative impact on absolute cell count or the viability and relative distribution of both CD45 and CD34 positive cells compared to vehicle treated control hCB cells. Significantly, hCB treated with dmPGE2 produced enhanced numbers of GM and GEMM colonies in methylcellose CFU-C assays compared to controls. Human CB cells treated ex vivo with dmPGE2 for 1 hour and transplanted at a dose of 20 million live CD45+ cells per recipient were capable of repopulating NOD/SCID mice after sublethal irradiation. In comparative studies at 6 weeks post transplantation, human CD34+ and CD45+ cells could be detected in the marrow (>2%) of dmPGE2 treated (4/8) and control treated (1/6) recipients. Long-term and competitive transplantation experiments to assess the effect of dmPGE2 treatment on functional HSCs are currently in progress. Our data suggests that treatment of human cord blood products with dmPGE2 will be both safe and effective in achieving expansion of hematopoietic stem cells for transplantation in the clinical setting. TE North and W Goessling contributed equally to this work.


Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


2003 ◽  
Vol 14 (17) ◽  
pp. 1683-1686 ◽  
Author(s):  
Bobbie Thomasson ◽  
Laura Peterson ◽  
Jesse Thompson ◽  
Martin Goerner ◽  
Hans-Peter Kiem

Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3454-3457 ◽  
Author(s):  
Hanno Glimm ◽  
Patrick Tang ◽  
Ian Clark-Lewis ◽  
Christof von Kalle ◽  
Connie Eaves

Abstract Ex vivo proliferation of hematopoietic stem cells (HSCs) is important for cellular and gene therapy but is limited by the observation that HSCs do not engraft as they transit S/G2/M. Recently identified candidate inhibitors of human HSC cycling are transforming growth factor-β1(TGF-β1) and stroma-derived factor–1 (SDF-1). To determine the ability of these factors to alter the transplantability of human HSCs proliferating in vitro, lin− cord blood cells were first cultured for 96 hours in serum-free medium containing Flt3 ligand, Steel factor, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. These cells were then transferred to medium containing Steel factor and thrombopoietin with or without SDF-1 and/or TGF-β1 for 48 hours. Exposure to SDF-1 but not TGF-β1 significantly increased (> 2-fold) the recovery of HSCs able to repopulate nonobese diabetic/severe combined immunodeficiency mice. These results suggest new strategies for improving the engraftment activity of HSCs stimulated to proliferate ex vivo.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1759-1768 ◽  
Author(s):  
Bernhard Schiedlmeier ◽  
Hannes Klump ◽  
Elke Will ◽  
Gökhan Arman-Kalcek ◽  
Zhixiong Li ◽  
...  

Ectopic retroviral expression of homeobox B4 (HOXB4) causes an accelerated and enhanced regeneration of murine hematopoietic stem cells (HSCs) and is not known to compromise any program of lineage differentiation. However, HOXB4 expression levels for expansion of human stem cells have still to be established. To test the proposed hypothesis that HOXB4 could become a prime tool for in vivo expansion of genetically modified human HSCs, we retrovirally overexpressed HOXB4 in purified cord blood (CB) CD34+ cells together with green fluorescent protein (GFP) as a reporter protein, and evaluated the impact of ectopic HOXB4 expression on proliferation and differentiation in vitro and in vivo. When injected separately into nonobese diabetic–severe combined immunodeficient (NOD/SCID) mice or in competition with control vector–transduced cells, HOXB4-overexpressing cord blood CD34+ cells had a selective growth advantage in vivo, which resulted in a marked enhancement of the primitive CD34+ subpopulation (P = .01). However, high HOXB4 expression substantially impaired the myeloerythroid differentiation program, and this was reflected in a severe reduction of erythroid and myeloid progenitors in vitro (P < .03) and in vivo (P = .01). Furthermore, HOXB4 overexpression also significantly reduced B-cell output (P < .01). These results show for the first time unwanted side effects of ectopic HOXB4 expression and therefore underscore the need to carefully determine the therapeutic window of HOXB4 expression levels before initializing clinical trials.


Sign in / Sign up

Export Citation Format

Share Document