scholarly journals The Pilot Study of Fibrin with Temporomandibular Joint Derived Synovial Stem Cells in Repairing TMJ Disc Perforation

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Wu ◽  
Zhongcheng Gong ◽  
Jian Li ◽  
Qinggong Meng ◽  
Wei Fang ◽  
...  

TMJ disc related diseases are difficult to be cured due to the poor repair ability of the disc. TMJ-SDSCs were ideal cell sources for cartilage tissue engineering which have been widely used in hyaline cartilage regeneration. Fibrin gel has been demonstrated as a potential scaffold for neocartilage formation. The aim of this study was to repair the TMJ disc perforation using fibrin/chitosan hybrid scaffold combined with TMJ-SDSCs. Rat TMJ-SDSCs were cultured on hybrid scaffold or pure chitosan scaffolds. The cell seeding efficiency, distribution, proliferation, and chondrogenic differentiation capacity were investigated. To evaluate thein vivorepair ability of cell/scaffold construct, rat TMJ disc explants were punched with a defect to mimic TMJ disc perforation. Cell seeded scaffolds were inserted into the defect of TMJ disc explants and then were implanted subcutaneously in nude mice for 4 weeks. Results demonstrated that fibrin may improve cell seeding, proliferation, and chondrogenic inductionin vitro. Thein vivoexperiments showed more cartilage ECM deposition in fibrin/chitosan scaffold, which suggested an enhanced reparative ability. This pilot study demonstrated that the regenerative ability of TMJ-SDSCs seeded in fibrin/chitosan scaffold could be applied for repairing TMJ disc perforation.

2019 ◽  
Vol 47 (10) ◽  
pp. 2348-2359 ◽  
Author(s):  
Vanessa J. Bianchi ◽  
Adrienne Lee ◽  
Jesse Anderson ◽  
Justin Parreno ◽  
John Theodoropoulos ◽  
...  

Background: Autologous chondrocyte implantation, which uses passaged chondrocytes, commonly leads to the formation of fibrocartilage. When chondrocytes are passaged to increase cell numbers, they lose their phenotype and ability to form hyaline cartilage. The use of transforming growth factor β (TGFβ) to redifferentiate passaged chondrocytes has been validated in vitro; however, it is unknown if redifferentiated chondrocytes will enhance defect repair when implanted in vivo. Furthermore, fibrin gel is used in orthopaedic surgery as a fixative and scaffold and could be an appropriate carrier to enhance retention of cells in the repair site. Purpose: To investigate if passaged redifferentiated chondrocytes in fibrin gel have the ability to form cartilage tissue and if these redifferentiated cells will enhance the formation of hyaline cartilage in vivo when implanted into critical-size osteochondral defects. Study Design: Controlled laboratory study. Methods: Rabbit and human chondrocytes were serially passaged twice in monolayer culture. Twice-passaged cells were used directly (dedifferentiated) or redifferentiated in high-density culture with TGFβ3. Dedifferentiated or redifferentiated cells were mixed with fibrin gel to form fibrin clots, which were cultured in vitro to assess the use of fibrin gel as a scaffold or implanted in vivo in a critical-size osteochondral defect in New Zealand White rabbit knee joints. Rabbits were sacrificed 6 weeks after implantation, and tissues were assessed histologically and by immunohistochemistry. Results: Redifferentiation of passaged chondrocytes by means of 3-dimensional culture in the presence of TGFβ3 improved the formation of cartilaginous tissues in vitro, and culture in fibrin gel did not affect the cell phenotype. Implantation of dedifferentiated cells in vivo resulted in fibrocartilaginous repair tissues. Redifferentiated chondrocyte implants resulted in granulation tissues containing the hyaline cartilage marker collagen type 2. Conclusion: Redifferentiated chondrocytes will maintain their chondrogenic differentiation in fibrin clots. Implanted redifferentiated chondrocytes show a different reparative response than dedifferentiated chondrocytes and do not appear to enhance repair at an early time point. Another study of longer duration is required to assess tissue maturation over time. Clinical Relevance: Redifferentiation of passaged chondrocytes with TGFβ3 before implantation does not improve defect repair in the first 6 weeks.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Salvatrice Rigogliuso ◽  
Francesco Carfì Pavia ◽  
Vincenzo La Carrubba ◽  
Valerio Brucato ◽  
Giulio Ghersi

In the present work a simple and quick technique for cell seeding into tubular-shaped scaffolds, which allows a homogeneous cell distribution, was tested. The poly-L-lactide (PLLA) scaffolds, prepared via diffusion induced phase separation (DIPS), were filled with fibrin gel in order to obtain a hybrid scaffold for Vascular Tissue Engineering applications. The formation of immobilized fibrin networks on the inner surface of the tubular scaffolds was observed using confocal microscopy and SEM. Morphological analysis of the so-obtained scaffold revealed that the fibrin gel is uniformly distributed on the internal surface of the scaffold, leading to an organized structure. Moreover a penetration of the gel into the porous wall of the scaffold was observed. The in vitro endothelial cell cultures carried out in the scaffolds highlighted a faster cell proliferation inside the hybrid scaffold with respect to simple PLLA scaffold. Results show that the fibrin/PLLA hybrid scaffold may be favourably used for Vascular Tissue Engineering applications.


2020 ◽  
pp. 088532822095441
Author(s):  
Haiqiong Yue ◽  
Janak L Pathak ◽  
Rui Zou ◽  
Lei Qin ◽  
Ting Liao ◽  
...  

Fibrin gel-based scaffolds have promising potential for microtia reconstruction. Autologous chondrocytes and chondrocyte cell sheets are frequently used seed cell sources for cartilage tissue engineering. However, the aesthetic outcome of chondrocyte-based microtia reconstruction is still not satisfactory. In this study, we aimed to fabricate the chondrocytes/chondrocyte-microtissues laden fibrin gel auricular scaffold for microtia reconstruction. We designed a unique auricular mold that could fabricate a fibrin gel scaffold resembling human auricle anatomy. Primary chondrocytes were harvested from rabbit auricular cartilage, and chondrocyte cell sheets were developed. Chondrocyte-microtissues were prepared from the cell sheets. The mixture of chondrocytes/chondrocyte-microtissues was laden in fibrin gel during the auricular scaffold fabrication. The protrusions and recessed structure in the auricular scaffold surface were still clearly distinguishable. After a one-week in vitro culture, the 3 D structure and auricular anatomy of the scaffold were retained. And followed by eight-week subcutaneous implantation, cartilaginous tissue was regenerated in the artificial auricular structure as indicated by the results of H&E, Toluidine blue, Safranin O, and type II collagen (immunohistochemistry) staining. Protrusions and depressions of the auricular scaffold were slightly deformed, but the overall auricular anatomy was maintained after 8-week in vivo implantation. Extracellular matrix components content were similar in artificial auricular cartilage and rabbit native auricular cartilage. In conclusion, the mixture of chondrocytes/chondrocyte-microtissues laden fibrin gel auricular scaffold showed a promising potential for cartilaginous tissue regeneration, suggesting this as an effective approach for autologous chondrocyte-based microtia reconstruction.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1429
Author(s):  
Theo Wallimann ◽  
Caroline H. T. Hall ◽  
Sean P. Colgan ◽  
Louise E. Glover

Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shojiro Katoh ◽  
Atsuki Fujimaru ◽  
Masaru Iwasaki ◽  
Hiroshi Yoshioka ◽  
Rajappa Senthilkumar ◽  
...  

AbstractRegenerative medicine applications require cells that are not inflicted with senescence after in vitro culture for an optimal in vivo outcome. Methods to overcome replicative senescence include genomic modifications which have their own disadvantages. We have evaluated a three-dimensional (3D) thermo-reversible gelation polymer (TGP) matrix environment for its capabilities to reverse cellular senescence. The expression of senescence-associated beta-galactosidase (SA-βgal) by human chondrocytes from osteoarthritis-affected cartilage tissue, grown in a conventional two-dimensional (2D) monolayer culture versus in 3D-TGP were compared. In 2D, the cells de-differentiated into fibroblasts, expressed higher SA-βgal and started degenerating at 25 days. SA-βgal levels decreased when the chondrocytes were transferred from the 2D to the 3D-TGP culture, with cells exhibiting a tissue-like growth until 42–45 days. Other senescence associated markers such as p16INK4a and p21 were also expressed only in 2D cultured cells but not in 3D-TGP tissue engineered cartilage. This is a first-of-its-kind report of a chemically synthesized and reproducible in vitro environment yielding an advantageous reversal of aging of human chondrocytes without any genomic modifications. The method is worth consideration as an optimal method for growing cells for regenerative medicine applications.


Author(s):  
Willemijn H. F. Huijgen ◽  
Paul F. Gründeman ◽  
Tycho van der Spoel ◽  
Maarten-Jan Cramer ◽  
Paul Steendijk ◽  
...  

Objective Endoventricular circular patch plasty is a method used to reconstruct the ventricular cavity in patients with (post) ischemic left ventricular aneurysm or global dilatation. However, late redilatation with mitral regurgitation has been reported, in which postoperative apex shape seems to play an important role. We studied the feasibility of ventricular volume downsizing with a variably shaped patch in porcine hearts. Methods In five in vitro and two acute animal experiments, a dyskinetic aneurysm was simulated with a pericardial insert. Reducing patch surface by changing patch shape diminished end-diastolic volume. In vitro, static end-diastolic volume was determined for each patch shape using volumetry and echocardiography. In the acute animal experiments, preliminary observations of patch behavior in live material were made, and pressure/time relationship, dPdTmax, was registered. Results In vitro, bringing the convex patch into a flat plane reduced LV volume from 66 ± 7 mL (aneurysm) to 49 ± 5 mL. Four of 5 patch shapes further reduced volume to a mean of 38 ± 7 mL (P = 0.03). The in vitro echocardiographic measurements correlated with volumetry findings (r = 0.81). In the acute animal experiments, dPdTmax varied with patch shape, independent of volume changes. Conclusions In this pilot study, in vitro shape configuration of the resizable ventricular patch resulted in a calibrated end-diastolic volume reduction. The data of the two in vivo pilot experiments clearly indicate that change in patch configuration in the situation of more or less unchanged end-diastolic volume had impact on cardiac performance. Future studies must substantiate the results of this observation.


2013 ◽  
Vol 44 (5) ◽  
pp. 361-369 ◽  
Author(s):  
Roy J. Kim ◽  
Sumit Vaghani ◽  
Larisa M. Zifchak ◽  
Joseph H. Quinn ◽  
Weimian He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document