scholarly journals Effects of Danshen Ethanol Extract on the Pharmacokinetics of Fexofenadine in Healthy Volunteers

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Furong Qiu ◽  
Jin Zeng ◽  
Songcan Liu ◽  
Min He ◽  
Leilei Zhu ◽  
...  

This study investigated the effect of multidose administration of danshen ethanol extract on fexofenadine pharmacokinetics in healthy volunteers. A sequential, open-label, two-period pharmacokinetic interaction design was used. 12 healthy male volunteers received a single oral dose of fexofenadine (60 mg) followed by danshen ethanol extract (1 g orally, three times a day) for 10 days, after which they received 1 g of the danshen extract with fexofenadine (60 mg) on the last day. The plasma concentrations of fexofenadine was measured by LC-MS/MS. After 10 days of the danshen extract administration, the mean AUC andCmax⁡of the fexofenadine was decreased by 37.2% and 27.4% compared with the control, respectively. The mean clearance of fexofenadine was increased by 104.9%. Thein vitrostudy showed that tanshinone IIA and cryptotanshinone could induce MDR1 mRNA. This study showed that multidose administration of danshen ethanol extract could increase oral clearance of fexofenadine. The increased oral clearance of fexofenadine is attributable to induction of intestinal P-glycoprotein.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Furong Qiu ◽  
Jian Jiang ◽  
Yueming Ma ◽  
Guangji Wang ◽  
Chenglu Gao ◽  
...  

The aim of this study was to investigate the effect of single- and multidose administration of the ethanol extract of danshen on in vivo CYP3A activity in healthy volunteers. A sequential, open-label, and three-period pharmacokinetic interaction study design was used based on 12 healthy male individuals. The plasma concentrations of midazolam and its metabolite 1-hydroxymidazolam were measured. Treatment with single dose of the extract caused the meanCmaxof midazolam to increase by 87% compared with control. After 10 days of the danshen extract intake, the mean AUC0–12,Cmax, andt1/2of midazolam were decreased by 79.9%, 66.6%, and 43.8%, respectively. The mean clearance of midazolam was increased by 501.6% compared with control. The in vitro study showed that dihydrotanshinone I in the extract could inhibit CYP3A, while tanshinone IIA and cryptotanshinone could induce CYP3A. In conclusion, a single-dose administration of the danshen extract can inhibit intestinal CYP3A, but multidose administration can induce intestinal and hepatic CYP3A.


2005 ◽  
Vol 49 (3) ◽  
pp. 959-962 ◽  
Author(s):  
Sandra Reilley ◽  
Eric Wenzel ◽  
Laurie Reynolds ◽  
Beth Bennett ◽  
Joseph M. Patti ◽  
...  

ABSTRACT Tefibazumab (Aurexis) is a humanized monoclonal antibody being evaluated as adjunctive therapy for the treatment of Staphylococcus aureus infections. This open-label, dose escalation study evaluated the safety and pharmacokinetics of tefibazumab in 19 healthy volunteers aged 18 to 69 years. Each subject received a single administration of tefibazumab at a dose of 2, 5, 10, or 20 mg/kg of body weight infused over 15 min. Plasma samples for pharmacokinetic assessments were obtained before infusion as well as 1, 6, 12, and 24 h and 3, 4, 7, 21, 28, 42, and 56 days after dosing. Plasma concentrations of tefibazumab were detected 1 h after the end of the infusion, with a mean maximum concentration of drug in serum (C max) of 59, 127, 252, and 492 μg/ml following doses of 2, 5, 10, and 20 mg/kg, respectively. The median time to maximum concentration of drug in serum (T max) was 1.0 h for each dose. The mean elimination half-life (t 1/2) was approximately 22 days. The volume of distribution (V) was 4.7, 6.7, 7.2, and 7.2 liters after doses of 2, 5, 10, and 20 mg/kg, respectively. Clearance (CL) was 6.0, 9.2, 10.2, and 9.9 ml/hr, respectively. At the highest dose, plasma levels of tefibazumab were >100 μg/ml for 21 days. On day 56, the mean plasma concentrations were 6.3, 10.0, 16.4, and 30.5 μg/ml for the 2, 5, 10, and 20 mg/kg doses, respectively. Tefibazumab exhibited linear kinetics across doses of 5, 10, and 20 mg/kg. No anti-tefibazumab antibodies were detected after dosing in any subject. There were no serious adverse events, and tefibazumab was well tolerated over the entire dose range.


2013 ◽  
Vol 5 ◽  
pp. CMT.S10561 ◽  
Author(s):  
Suman Wason ◽  
Jennifer L. DiGiacinto ◽  
Matthew W. Davis

Colchicine is a substrate for cytochrome 3A4 (CYP3A4) enzyme and P-glycoprotein efflux transporter (P-gp); consequently, concomitant administration with drugs that inhibit these have the potential to cause clinically significant increases in colchicine plasma concentrations and precipitate adverse events. Ritonavir, a protease inhibitor, elicits potent CYP3A4 and P-gp inhibitory activity. In this open-label, nonrandomized, one-sequence, two-period study, 24 healthy volunteers received a single 0.6-mg dose of colchicine alone and together with multiple-dose ritonavir (100 mg twice daily for 4 days) to evaluate drug-drug interactions. Serial blood samples were collected for the determination of colchicine plasma concentrations. Standard pharmacokinetic parameter values were calculated along with 90% confidence intervals (ie, area under the concentration-time curve plasma from time zero to the time of last quantifiable concentration [AUC0-t and AUC0-∞], maximum drug concentration [Cmax]) for colchicine alone and colchicine combined with multiple-dose ritonavir. The mean Cmax and AUC0-t were significantly increased (170% and 245%, respectively) when colchicine was coadministered with ritonavir as compared with colchicine alone. Study data confirm the need for a dose adjustment (approximately 50% reduction) when colchicine is coadministered with strong CYP3A/P-gp inhibitors.


2016 ◽  
Vol 19 (2) ◽  
pp. 198 ◽  
Author(s):  
Ioana Todor ◽  
Adina Popa ◽  
Maria Neag ◽  
Dana Muntean ◽  
Corina Bocsan ◽  
...  

Purpose: To evaluate the impact of bupropion on the pharmacokinetic profile of atomoxetine and its main active metabolite (glucuronidated form), 4-hydroxyatomoxetine-O-glucuronide, in healthy volunteers. Methods: An open-label, non-randomized, two-period, sequential clinical trial was conducted as follows: during Period I (Reference), each volunteer received a single oral dose of 25 mg atomoxetine, whilst during Period II (Test), a combination of 25 mg atomoxetine and 300 mg bupropion was administered to all volunteers, after a pretreatment regimen with bupropion for 7 days. Next, after determining atomoxetine and 4-hydroxyatomoxetine-O-glucuronide plasma concentrations, their pharmacokinetic parameters were calculated using a noncompartmental method and subsequently compared to determine any statistically significant differences between the two periods. Results: Bupropion intake influenced all the pharmacokinetic parameters of both atomoxetine and its metabolite. For atomoxetine, Cmax increased from 226±96.1 to 386±137 ng/mL and more importantly, AUC0-∞ was significantly increasedfrom 1580±1040 to 8060±4160 ng*h/mL, while the mean t1/2 was prolonged after bupropion pretreatment. For 4-hydroxyatomoxetine-O-glucuronide, Cmax and AUC0-∞  were decreased from 707±269 to 212±145 ng/mL and from 5750±1240 to 3860±1220 ng*h/mL, respectively. Conclusions: These results demonstrated that the effect of bupropion on CYP2D6 activity was responsible for an increased systemic exposure to atomoxetine (5.1-fold) and also for a decreased exposure to its main metabolite (1.5-fold). Additional studies are required in order to evaluate the clinical relevance of this pharmacokinetic drug interaction.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Iris H. Chen ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACT Combination therapy may enhance imipenem/cilastatin/relebactam’s (I/R) activity against Pseudomonas aeruginosa and suppress resistance development. Human-simulated unbound plasma concentrations of I/R at 1.25 g every 6 h (h), colistin at 360 mg daily, and amikacin at 25 mg/kg daily were reproduced alone and in combination against six imipenem-nonsusceptible P. aeruginosa isolates in an in vitro pharmacodynamic model over 24 h. For I/R alone, the mean reductions in CFU ± the standard errors by 24 h were −2.52 ± 0.49, −1.49 ± 0.49, −1.15 ± 0.67, and −0.61 ± 0.10 log10 CFU/ml against isolates with MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. Amikacin alone also resulted in 24 h CFU reductions consistent with its MIC, while colistin CFU reductions did not differ. Resistant subpopulations were observed after 24 h in 1, 4, and 3 I/R-, colistin-, and amikacin-exposed isolates, respectively. The combination of I/R and colistin resulted in synergistic (n = 1) or additive (n = 2) interactions against three isolates with 24-h CFU reductions ranging from −2.62 to −4.67 log10 CFU/ml. The combination of I/R and amikacin exhibited indifferent interactions against all isolates, with combined drugs achieving −0.51- to −3.33-log10 CFU/ml reductions. No resistant subpopulations were observed during I/R and colistin combination studies, and when added to amikacin, I/R prevented the emergence of amikacin resistance. Against these six multidrug-resistant P. aeruginosa, I/R alone achieved significant CFU reductions against I/R-susceptible isolates. Combinations of I/R plus colistin resulted in additivity or synergy against some P. aeruginosa, whereas the addition of amikacin did not provide further antibacterial efficacy against these isolates.


1992 ◽  
Vol 10 (2) ◽  
pp. 311-315 ◽  
Author(s):  
D K Baker ◽  
M V Relling ◽  
C H Pui ◽  
M L Christensen ◽  
W E Evans ◽  
...  

PURPOSE A possible pharmacokinetic interaction between teniposide and anticonvulsant medications was evaluated in pediatric patients. PATIENTS AND METHODS The systemic clearance of teniposide was determined in six pediatric patients with acute lymphocytic leukemia receiving concomitant therapy with anticonvulsants. Clearance was then compared with a control group of patients treated with the same protocol therapy and matched for age at diagnosis, sex, and race but not receiving anticonvulsants or other agents known to induce hepatic metabolism or alter protein binding of drugs. Eight blood samples were obtained during and after 4-hour infusions of teniposide, and plasma concentrations were measured by a specific high-performance liquid chromatography (HPLC) assay. A two-compartment model was fitted to each subject's data. RESULTS The mean systemic clearance (range) for the six anticonvulsant-treated patients studied during 22 courses of therapy was 32 mL/min/m2 (range, 21 to 54 mL/min/m2), significantly higher (P less than .001) than the mean value of 13 mL/min/m2 (range, 7 to 17 mL/min/m2) for the control patients studied during 26 courses of therapy. Clearance estimates for control patients were similar to previously published values for pediatric patients. CONCLUSION These data indicate that the systemic clearance of teniposide is consistently increased two- to three-fold by concomitant phenobarbital or phenytoin therapy. The consequent substantial reduction in systemic exposure may reduce teniposide's efficacy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1149-1149
Author(s):  
Bruce A. Wallin ◽  
Denise Ramjit ◽  
Michael Seiberling ◽  
David Zopf

Abstract NE-180 is a glycoPEGylated recombinant human erythropoietin that binds to and activates the erythropoietin (EPO) receptor. It has demonstrated in vitro activities comparable to EPO and an extended serum half-life in animal studies. This may allow less frequent dosing in patients being treated with chronic anemia. METHODS: A single center, open-label study of NE-180, administered as single escalating doses given by the SC or IV route, was conducted to assess the safety, tolerability, PK and PD. Subjects (male or female NHV) were planned to be assigned to one of 4 dose groups, 10 subjects per dose with 5 SC and 5 IV subjects per group: 0.5, 1.5, 3, or 4.5 mg/kg. Each dose group was planned to be initiated in an ascending, sequential fashion unless or until stopping rules were met. RESULTS: 25 NHV (16 females) were enrolled in the first two dose cohorts and have completed 56 day follow-up. The 1.5 mg/kg IV cohort met the protocol-specified Hb rate of rise stopping rule (change in Hb greater than 1 g/dL during any 14 day period). Injections were generally well tolerated with no discontinuations for adverse events or serious adverse events. Reticulocyte increases were dose proportional. Average reticulocyte count at baseline was 1.0±0.3%. The maximal increase occurred at day 7. The mean change from baseline for the 0.5 and 1.5 mg/kg SC group was: 0.9±0.4% and 2.2±0.9%, respectively. The mean change from baseline for the 0.5 and 1.5 mg/kg IV group was: 1.7±0.8% and 2.3±0.8%, respectively. PK data will be presented. CONCLUSIONS: Single doses up to 1.5 mg/kg of NE-180 administered to NHV were generally well tolerated and demonstrated potent dose-dependent erythropoietic activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Giovanna Petrangolini ◽  
Fabrizio Corti ◽  
Massimo Ronchi ◽  
Lolita Arnoldi ◽  
Pietro Allegrini ◽  
...  

Objective. To evaluate in vitro solubility, bioaccessibility, and cytotoxic profile, together with a pharmacokinetic profile by oral administration to healthy volunteers of a novel food-grade berberine formulation (BBR-PP, i.e., berberine Phytosome®). Results. An in vitro increase of solubility in simulated gastric and intestinal fluids and an improved bioaccessibility at intestinal level along with a lower cytotoxicity with respect to berberine were observed with BBR-PP. The pharmacokinetic profile of the oral administration to healthy volunteers confirmed that berberine Phytosome® significantly ameliorated berberine absorption, in comparison to unformulated berberine, without any observed side effects. The berberine plasma concentrations observed with both doses of BBR-PP were significantly higher than those seen after unformulated berberine administration, starting from 45 min (free berberine) and 30 min (total berberine). Furthermore, BBR-PP improved berberine bioavailability (AUC) was significantly higher, around 10 times on molar basis and with observed dose linearity, compared to the unformulated berberine. Conclusion. These findings open new perspectives on the use of this healthy berberine formulation in metabolic discomforts.


2020 ◽  
Author(s):  
Li Xin ◽  
Chenjing Wang ◽  
Ting Li ◽  
Yanping Liu ◽  
Shuqin Liu ◽  
...  

Abstract Background: Levamlodipine, a calcium channel blocker, has been show act as a cardiovascular drug. To compare the pharmacokinetic parameters between levamlodipine (test formulation) at a single dose of 5 mg and amlodipine (reference formulation) at a single dose of 10 mg, the bioequivalence study was carried out.Methods: A single-dose randomized, open-label, two-period crossover study was designed in healthy Chinese subjects. 48 subjects were divided into fasted and fed groups equally. The subjects randomly received the test or reference formulations at the rate of 1:1. Following a 21-day washout period, the alternative formulations were received. The blood samples were collected at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 24, 36, 48, 72, 96, 120, 144, 168 hours later. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was applied to determine the plasma concentrations of levamlodipine. Adverse events were recorded.Results: The 90% confidence intervals (CIs) of the ratio of geometric means (GMRs) of Cmax, AUC0-t, and AUC0-∞ under both fasted and fed conditions were within the prespecified bioequivalence limits between 80~125%. Under fasted conditions, 24 subjects were enrolled and completed the study. The mean Cmax was (2.70±0.49) ng/mL, AUC0-t was (141.32±36.24) ng×h/mL and AUC0-∞ was (157.14±45.65) ng×h/mL after a single dose of 5 mg levamlodipine. The mean Cmax was (2.83±0.52) ng/mL, AUC0-t was (153.62±33.96) ng×h/mL and AUC0-∞ was (173.05±41.78) ng×h/mL after a single dose of 10 mg amlodipine. Under fed conditions, 24 subjects were enrolled and completed the study. The mean Cmax was (2.73±0.55) ng/mL, AUC0-t was (166.93±49.96) ng×h/mL and AUC0-∞ was (190.99±70.89) ng×h/mL after a single dose of 5 mg levamlodipine. The mean Cmax was (2.87±0.81) ng/mL AUC0-t was (165.46±43.58) ng×h/mL and AUC0-∞ was (189.51±64.70) ng×h/mL after a single dose of 10 mg amlodipine. Serious adverse event was not observed.Conclusion: The trial confirmed that levamlodipine at a single dose of 5 mg and amlodipine at a single dose of 10 mg were bioequivalent under both fasted condition and fed condition.Trial registration: Cinicaltrials, NCT04411875. Registered 3 June 2020 - Retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S0009W1Q&selectaction=Edit&uid=U00050YQ&ts=3&cx=-6iqkm8


2014 ◽  
Vol 58 (12) ◽  
pp. 7041-7048 ◽  
Author(s):  
Iris Usach ◽  
Virginia Melis ◽  
Patricia Gandía ◽  
José-Esteban Peris

ABSTRACTOne of the most frequent comorbidities of HIV infection is depression, with a lifetime prevalence of 22 to 45%. Therefore, it was decided to study a potential pharmacokinetic interaction between the nonnucleoside reverse transcriptase inhibitor nevirapine (NVP) and the tricyclic antidepressant nortriptyline (NT). NVP and NT were administered to rats either orally, intraduodenally, or intravenously, and the changes in plasma levels and pharmacokinetic parameters were analyzed. Experiments with rat and human hepatic microsomes were carried out to evaluate the inhibitory effects of NT on NVP metabolism. NVP plasma concentrations were significantly higher when this drug was coadministered with NT. The maximum plasma concentrations of NVP were increased 2 to 5 times and the total plasma clearance was decreased 7-fold in the presence of NT. However, statistically significant differences in the pharmacokinetic parameters of NT in the absence and presence of NVP were not found.In vitrostudies with rat and human hepatic microsomes confirmed the inhibition of NVP hepatic metabolism by NT in a concentration-dependent way, with the inhibition being more intense in the case of rat microsomes. In conclusion, a pharmacokinetic interaction between NVP and NT was detected. This interaction was a consequence of the inhibition of hepatic metabolism of NVP by NT.In vivohuman studies are required to evaluate the effects of this interaction on the pharmacokinetics of NVP before it can be taken into account for patients receiving NVP.


Sign in / Sign up

Export Citation Format

Share Document